Не без оснований, пожалуй, можно утверждать, что основа биохимических исследований, направленных на решение научных и практических проблем обеспечения первых космических полетов человека в космос, была заложена в Институте авиационной медицины задолго до начала космической эры. Работы, проводимые в 40—50-е гг. под руководством ГГ. Газенко, а с 1951 г. — М.М. Фоменко, были направлены на изучение изменений в организме человека при действии факторов летного труда — главным образом гипоксической гипоксии, а затем и ионизирующей радиации В этот период проводились в основном гематологические исследования. Ответственным исполнителем этих работ была старший научный сотрудник Н.П. Благовестова, изучавшая изменения в системе крови, наступающие в результате лучевого воздействия и влияния облучения на переносимость перегрузок. Совместно с коллегами ею, в частности, было показано, что действие ускорений (эксперименты на животных) вызвало уменьшение количества тромбоцитов, что, по мнению авторов, могло быть неблагоприятным фактором, отягчающим лучевую болезнь.
Целенаправленные биохимические исследования по проблемам космической медицины в полной мере были развернуты в период подготовки к полету первого космонавта-врача Б.Б. Егорова. Главной целью этих работ являлось изучение обменных процессов в организме космонавтов во время космических полетов различной длительности и их имитации. Раскрытие механизмов, лежащих в основе обменных нарушений у космонавтов, позволило в дальнейшем подойти к разработке способов профилактики этих нарушений и реабилитации. Основными направлениями исследований были следующие: исследование гормональных механизмов, определяющих формирование адаптивных реакций в условиях космического полета и в восстановительном периоде; изучение особенностей обмена веществ в полете, исследование водно-солевого и белкового обмена; исследование ответных реакций со стороны системы крови, в частности по показателям массы и концентрации гемоглобина. В качестве отдельного направления исследований отрабатывались методические задачи, направленные на разработку методов взятия и консервации биопроб, а также проведения доступных лабораторных исследований непосредственно в условиях космического полета.
Исследование гормонального обмена было направлено главным образом на оценку состояния нейрогуморальной регуляции в организме космонавтов, в частности, на изучение активности системы гипоталамус—гипофиз—кора надпочечников, отражающей выраженность стресс-реакций на действие неблагоприятных факторов космического полета . Для развития этого направления необходимо было разработать, освоить и внедрить методы оценки гормональной активности эндокринных систем, вовлеченных в реакции стрессорного ответа. Работы в этой области, включая и создание новых установок для обеспечения оригинальных методик, возглавил И.С. Балаховский, который руководил отделом биохимических исследований НИИИАиКМ с 1964 по 1982 гг. Большой вклад в разработку и налаживание спектрофотометрического метода исследования глюкокортикоидов в биологических жидкостях с использованием первого в Институте спектрофотометра СФ-4 внес врач НА. Воробьев, обладавший незаурядным талантом технического творчества. В 1960—1965 гг. И.С. Балаховским и И.Г. Длусской были отработаны методы определения 11-оксикортикостероидов(11-ОКС) в крови микрофлюоресцентным методом с применением самостоятельно разработанной установки. Решаемые при этом научные задачи были направлены на изучение закономерности динамики глюкокортикоидных реакций на стресс-воздействия в зависимости от их силы и длительности . По содержанию в моче у людей 17-кетостероидов (17-КС) вырабатывали критерии их выведения в норме и при стрессе различной выраженности. С помощью специально разработанного показателя — стероидкреатининового коэффициента — начали изучать активность коры надпочечников у космонавтов в условиях реального полета. Из этих работ был сделан вывод о том, что для суждения о функциональном состоянии коры надпочечников надо изучать содержание кортикостероидов во фракциях мочи, собранных до, во время и после воздействия. Одновременно И.В. Федоров и Г.Г. Стуруа исследовали активность серотонинового обмена по содержанию в моче 5-оксииндолуксусной кислоты и продуктов ее сопряжения с 17-КС. Т.А. Орлова изучала синтез глюкокортикоидов переживающей тканью коры надпочечников крыс . В эти же годы большая работа проводилась по изучению механизма действия гормонов в живом организме. Так, О.А. Вировец изучала влияние адреналина на тканевое дыхание: работа была оформлена в виде ее кандидатской диссертации в 1966 г. . Это теоретическое исследование внесло свою лепту в расшифровку механизма действия одного из основных гормонов, участвующих в реализации стрессорной реакции организма на внешнее воздействие. Впоследствии (начиная с 1975 г.) методические аспекты этой проблемы разрабатывала И.П. Яковлева. Ею под руководством И.С. Балаховского были предложены модификации спектрофлюоресцентного метода определения адреналина и норадреналина в моче и метод определения деривата катехоламинов — ванилилминдальной кислоты, которые нашли применение в изучении изменений обмена веществ при гипоксии и в космическом полете Исходное содержание адреналина в моче впоследствии было использовано для прогноза переносимости барокамерной пробы . В 1965—1970 гг. были проведены исследования по изучению экскреции глюкокортикоидов у космонавтов в период клинико-физиологического обследования (КФО) и после полетов различной продолжительности . Было показано, что у высокоэмоциональных лиц сильно выражена так называемая «предстартовая фаза» реакции. Установленные в лабораторных условиях нормы экскреции в различные часы суток, изучение лабильности суточного ритма экскреции 17-КС нашли применение в работах по оценке адаптации к нагрузкам, перестройки суточных ритмов в длительных экспериментах применительно к условиям космических полетов В 1970 г. И.Г. Длусской была защищена кандидатская диссертация на тему «Динамика глюкокортикоидных реакций, вызванных факторами полета».
Бортовая укладка «АМАК» (автономный анализатор крови), предназначенная для взятия и консервирования проб крови в космическом полете
Одним из основных направлений в области космической биологии и медицины, разрабатываемым в отделе биохимических исследований НИИИАиКМ на протяжении более двух десятилетий (1960—1980), было исследование обменных процессов у космонавтов во время полетов на космических кораблях и при их имитации в модельных экспериментах с длительной антиортостатической гипокинезией (АНОГ), поскольку невесомость, приводящая к исчезновению гидростатического градиента давления крови, является пусковым механизмом для ряда изменений в обмене веществ.
С целью изучения влияния факторов полета на организм, оценки состояния здоровья космонавтов, совершенствования рациона питания, разработки более рациональных режимов труда и отдыха необходимо было иметь сведения о биохимическом составе крови и, следовательно, располагать специальными методами для ее исследования. Обычные методы биохимического анализа крови были непригодны, поскольку требовали большого количества крови для анализа, быстрой обработки материала и строгого количественного забора проб крови, что во время полета осуществить невозможно. Поэтому возникла необходимость создания специальных методов исследований консервированной крови. С этой целью в 1960—1965 гг. начали активно разрабатываться способы консервации и микроанализа, позволяющие в капле высушенной крови определять сразу несколько компонентов . При выборе показателей основное внимание уделялось тому, чтобы по возможности полно отразить различные стороны обменных процессов. Работы были выполнены Т.А. Орловой под руководством И.С. Балаховского; в 1971 г. Т.А. Орлова защитила кандидатскую диссертацию на тему «Комплексный микрохимический анализ крови и его применение в авиационной и космической медицине» В окончательном варианте разработанного микрометода в одной капле крови можно было определять следующие компоненты: сухой остаток, гемоглобин, а также глюкозу, мочевину, хлор, холестерин (свободный и эфирносвязанный), липидный фосфор, железо и общий азот. В последующем метод был дополнен оригинальной методикой определения креатинина с использованием вертикальной проточной кюветы и методом определения свободных жирных кислот Общая схема биохимического анализа крови сводилась к последовательному экстрагированию различных классов веществ в серии растворителей, очистке этих веществ и конечному их определению спектрофотометрическим или титрометрическим методом. Способы определения липидов крови были разработаны в большинстве своем заново, особенно в части, касающейся их экстракции. Биохимический анализ высушенной крови позволил сохранять исследуемый материал в течение нескольких месяцев до момента анализа. Это направление развивалось вплоть до 1980 г. по двум путям: первое — постоянное расширение набора методик и второе — повышение чувствительности и специфичности существующих методов исследования.
На основе комплексного микрометода анализа крови была разработана укладка «АМАК» (автономный микроанализатор крови), предназначенная для взятия проб на борту космического корабля, консервирования их высушиванием, хранения и транспортировки в наземную лабораторию для анализа. Укладка «АМАК» содержала все необходимое для взятия в полете 10 проб крови: иглу скарификатор, 10 малых контейнеров с дезраствором, 10 больших контейнеров с осушителем для хранения проб крови и ленту для нанесения мазков крови. В последующие годы проводились доработка и усовершенствование этой аппаратуры. Так, в период 1978—1979 гг. конструктивные изменения коснулись части прибора, предназначенной для взятия проб на морфологические исследования. В 1983 г. И.С. Балаховским и Т.А. Орловой было получено свидетельство на изобретение «Контейнер для пробы крови» .
Биохимические исследования крови с помощью первого варианта аппаратуры «АМАК» были выполнены впервые в 1964 г. во время полета космического корабля «Восход-1», а затем у экипажей космических кораблей серии «Союз» (вплоть до 1980 г.) и у испытателей в длительных экспериментах .
Обсуждение результатов по исследованию массы гемоглобина у космонавтов (слева направо: И.С. Балаховский, А.Т. Тюпина, Р.К. Киселев)
В результате этих работ были установлены основные закономерности в изменении биохимического состава крови у космонавтов, принимавших участие в полетах разной длительности. Были обобщены результаты биохимического исследования крови космонавтов во время полетов на кораблях серии «Союз», полученные результаты сопоставлены с материалами американских авторов и результатами, полученными в модельных экспериментах . Сделаны выводы о том, что наблюдаемые сдвиги нельзя трактовать как признаки выраженного нарушения обмена веществ, что обменные синдромы, наблюдаемые в полете, в дальнейшем компенсируются и примененная система анализа взятых во время полета проб крови оказалась удобной и выполнимой.
Особое место в изучении обменных процессов у человека в космическом полете уделялось работе по расшифровке механизмов, лежащих в основе накопления мочевины крови и ответственных за ее выведение (1977—1981) . Повышение содержания мочевины крови — наиболее стойкое изменение, наблюдаемое практически во всех космических полетах и экспериментах с гиподинамией. Это явление впервые описано в 1969 г. Т.А. Орловой. Последующие работы были посвящены исследованию механизмов выведения мочевины почками при нахождении испытуемых в условиях строгого постельного режима и в условиях ее увеличенной продукции (эксперименты с белковыми нагрузками) , что позволяло в какой-то степени моделировать ситуацию массированного распада ткани. Результаты этих работ позволили сделать предположение о депонировании части азота в организме и о возможном существовании резервных белков.
В 1975 г. в плане решения проблем, связанных с жизнеобеспечением экипажей космических кораблей после аварийного приземления (приводнения), одним из направлений работы отдела было исследование обменных процессов у испытуемых, потреблявших рационы пониженной калорийности и выполнявших физические нагрузки.различной степени интенсивности в условиях высоких и низких температур окружающей среды (совместно с В.Г. Воловичем, В.Н. Усковым, O.K. Бычковым, И.П. Бобровницким). Эти исследования, начатые О.А. Вировец и продолженные Т.А. Орловой, помогли решить вопросы достаточности питания, допустимости применяемых физических нагрузок. В рамках этих работ проводились исследования функции почек — оценивались процессы клубочковой фильтрации и мочевиновыделительной функции почек, которые помогли интерпретации результатов, полученных во время и после космических полетов различной длительности .
Для выяснения значения для организма потери веса и ее патологических механизмов важно было установить, имел ли место при этом распад тканей или причина была только в дегидратации. С этой целью в отделе проводились работы по определению жидкостных секторов организма (объем внеклеточной жидкости, плазмы, внутриклеточной жидкости), а также массы калия, гемоглобина и исследование электролитного обмена (работы Р.К. Киселева, Л.Ю. Дженжеры, А.М. Чайки). Показано, что причиной потери веса была дегидратация, обусловленная главным образом потерей внеклеточной жидкости.
Сохранение на относительно постоянном уровне количества жидкости в сосудистом русле достигалось перераспределением жидкостных сред, и в частности — переходом части внутриклеточной жидкости в плазму .Разработка профилактических мероприятий способствовала меньшему отклонению констант жидкостей внутренней среды организма и показателей электролитного обмена в послеполетном периоде даже у космонавтов, совершавших длительные полеты.
В 1968—1975 гг. в отделе стало развиваться направление по исследованию водно-солевого и белкового обмена, а также эффектов водно-нагрузочных проб . Помимо изучения экскреции электролитов, началось изучение гормонального звена их регуляции — альдостерона — с помощью тонкослойной хроматографии, а затем радиоиммунного метода. Комплексное исследование кортикостероидного обмена позволило сформулировать положение об относительной функциональной недостаточности коры надпочечников у космонавтов после космических полетов .
Результаты работы отдела по изучению обменных процессов в условиях действия невесомости обобщены в докторской диссертации И.С. Балаховского «Особенности обменных процессов при космических полетах и их имитации в опытах с длительной гипокинезией» и в его монографии . В 1976—1980 гг. И.Г. Длусской была проведена серия экспериментальных исследований по изучению влияния водных и водно-солевых нагрузок на изменение объема циркулирующей крови и общего внеклеточного объема, показан их оптимизирующий эффект на переносимость ортостатической и барокамерной проб . В 1982—1984 гг. на основе результатов оценки переносимости ортостатических и водно-нагрузочных проб был проведен анализ механизмов, обеспечивающих различные типы физиологических реакций на воздействия, сопровождающиеся резким изменением объема циркулирующей крови .
В 1965—1975 гг. Е.Е. Симоновым были определены биохимические критерии переносимости и повреждающего действия на организм ударных перегрузок . Эти исследования с применением средств лабораторной диагностики стали одними из первых, где был установлен конкретный перечень клинике-лабораторных показателей, наиболее информативных при дифференцировании эффектов ударных воздействий. К ним были отнесены следующие: лейкоцитарная формула, содержание в крови биохимических компонентов — сахара, холестерина, мочевины, креатинина, а также ферментативная активность, изменение которой связывается с нарушением структуры тканей. Была предложена схема использования комплекса клинико-биохимических показателей для разграничения повреждающих и неповреждающих воздействий различной интенсивности.
Обмен белка и его составной части — гемоглобина — начал изучаться у космонавтов с 1968 г. в работах И.В. Федорова и О.А. Вировец, а затем в работах Р.К. Киселева и А.М. Чайки.
В течение почти десяти лет (с 1965 по 1975 гг.) в отделе был выполнен цикл исследований азотистого обмена в материалах, полученных при проведении космических полетов и в модельных экспериментах. Эти работы велись на масс-спектрометре, бесперебойную работу которого квалифицированно обеспечивал инженер В.Я. Еремеев.
И.В. Федоров, используя гиподинамическую модель невесомости, изучал включение стабильного изотопа N-15 в белки мышечной ткани крыс, разработал способ оценки азотистого обмена для последующего применения его на борту космического корабля ; результаты работ обобщены в его монографиях и статьях . В дальнейшем были разработаны карбон-моноксидный метод определения массы гемоглобина и метод определения скорости синтеза белка с помощью глицина, со стабильным изотопом N-15. Материалы по разработке карбонмоноксидного метода определения массы гемоглобина обобщены в кандидатской диссертации Р.К. Киселева в 1974 г. Было установлено, что после космических полетов продолжительностью более двух недель отмечается снижение общей массы гемоглобина. Это снижение достигало 30—33% от исходного через 1,5—2 месяца действия невесомости. С дальнейшим увеличением срока полета масса гемоглобина частично восстанавливалась, однако и после 175- и 211-суточных полетов снижение составляло в среднем 20%. Показано, что снижение массы гемоглобина связано с процессами гемоконцентрации в начальном периоде действия невесомости и снижением скорости синтеза гемоглобина и белка в организме .
В 1978 г. под руководством И.С. Балаховского были развернуты работы по определению должных и фактических величин биологических констант (массы гемоглобина, массы калия, объема внеклеточной жидкости) в связи с переносимостью факторов полета. Разработан способ расчета должных величин массы гемоглобина по росту и весу, позволяющий у здоровых мужчин в 70% случаев предсказать истинные величины с точностью до ±5% .
В 1970-е гг. начали проводиться работы по фармкоррекции синтеза белка в организме с помощью анаболических стероидов (неробол) при действии длительной невесомости и в реальном полете , а в 70—80-е гг. — по фармкоррекции нарушений эритропоэза в невесомости . Показано, что прием терапевтических доз гемостимуляторов (коамида, витамина В12 , фолиевой кислоты) в условиях 7- и 50-суточной АНОГ частично снимает влияние механизмов, подавляющих гемопоэз, не вызывает избыточной продукции эритроцитов в реадаптационном периоде, повышает устойчивость к перегрузкам. Апробированные фармакологические препараты (фоликобаламин и коамид) были рекомендованы для стимулирования эритропоэза, коррекции объема и состава крови у космонавтов и применялись как во время длительных космических полетов, так и в период реадаптации. Усиление интенсивности эритропоэза в реадаптационном периоде приводит к увеличению потребности организма в железе для синтеза гемоглобина, что требует дополнительного введения в это время железосодержащих препаратов. Разработанная в отделе нагрузочная проба с ферроцероном , предназначенная для определения резервов железа и характеристики степени насыщенности железосодержащих депо, наряду с результатами гематологических исследований, послужила основанием для применения железосодержащих препаратов при компенсации железодефицитных состояний. Проведение пробы рекомендовано у космонавтов до полетов, сразу после их окончания и два-три раза в реадаптационном периоде до достижения величин выведения железа, характерных для здоровых людей в норме. Устойчивые низкие величины выведения железа при проведении пробы в реадаптационном периоде, особенно если они сопровождаются изменениями со стороны красной крови, должны служить основанием для проведения соответствующих лечебных мероприятий.
Нельзя не отметить, что по мере развития отечественной космонавтики в связи с созданием специализированных биохимических лабораторий в головных учреждениях по методическому обеспечению космических полетов (Институте медико-биологических проблем, Центре подготовки космонавтов) интенсивность работ, проводимых в отделе биохимических исследований ГНИИИАиКМ в интересах космической медицины, прогрессивно снижалась. Однако неоспоримым остается тот факт, что именно в этом отделе на пике научного энтузиазма и высочайшей квалификации трудившихся в нем специалистов были получены основополагающие научные знания, позволившие не только изучать влияние факторов космического полета на различные стороны обменных процессов в организме космонавтов во время полетов и после их окончания, но и оценить роль регулирующих звеньев, раскрыть некоторые механизмы наблюдаемых при этом сдвигов, подойти к созданию используемой в космической медицине системы профилактических и реабилитационных мероприятий.
|