Решение задач с помощью систем уравнений второй степени. 9-й класс

Разделы: Математика

Класс: 9


Цели урока:

  1. Обучение составлению системы уравнений по условию задачи.
  2. Повышение интереса к решению текстовых задач.

Ход урока

I. Устный счет (8 мин)

Является ли решением уравнения х+2у=5 пара чисел: а) (0;1) б) (3;-1) в) (-1;3)

1. Является ли решением системы уравнений ,

пара чисел: а) х=1, у=6 б)х=3, у=2

2. Решите систему уравнений:

3. Определите степень уравнения:

  • А) х-у-1,2=0
  • Б)
  • В)
  • Г)

II. Изучение нового материала (10 мин)

При решении задач можно вводить две переменные и составлять систему уравнений.

Решить задачу двумя способами: «Гипотенуза прямоугольного треугольника равна 13 см. Найдите его катеты, если известно, что один из них на 7 см больше другого».

Решение:

1 способ- с помощью одной переменной.

Пусть один катет прямоугольного треугольника равен х см, а второй катет – х+7 см. Используя теорему Пифагора, составим уравнение:

х²+(х+7)²=13²

х²+х²+14х+49-169=0

2х²+14х-120=0

х²+7х-60=0

Д=49-4х1х(-60)=289

х1=-12, х2=5

корень х=-12 не удовлетворяет условию х>0.

Один катет равен 5 см, второй 12 см

2 способ- с помощью введения двух переменных.

Пусть первый катет х см, второй катет у см (х>0, у>0)

,

,

,

2у²+14у-120=0

у²+7у-60=0

у1=5, у2=-12 (не удовл. условию)

если у=5, то х=7+5=12

один катет равен 5 см, второй катет 12 см

Ответ: 12 см, 5 см

III. Закрепление нового материала (10 мин)

Решение задач:

1. Прямоугольный газон обнесён изгородью, длина которой 30 м. Площадь газона 56 м². Найдите длины сторон газона?

Решение: пусть х м –длина газона, у-ширина газона.

,

,

у²-15у+56=0

у1=7, у2=8

х1=8, х2=7

Ответ: 7 см, 8 см

2. Двое рабочих совместно могут выполнить заданную работу за 12 дней. Если первый рабочий сделает половину работы, а затем второй – вторую половину, то вся работа будет закончена за 25 дней нужно каждому из рабочих в отдельности для выполнения работы?

Решение: пусть для выполнения всей работы первому рабочему потребуется х дней, а второму у дней, тогда за 1 день первый выполняет 1/х часть, а второй 1/у часть всей работы. Работая совместно, всю работу они выполняют за 12 дней.

Таким образом 12(1/х+1/у)=1.

Пусть теперь работа выполняется рабочими поочередно. Тогда для выполнения половины всей работы первому потребуется 1/2:1/х=х/2 дней, а второму 1/2: 1/у=у/2 дней.

,

,

,

,

,

х=20 или х=30

у=50-х

Одному рабочему для выполнения всей работы требуется 20 дней, а другому 30 дней.

Ответ: 20 дней, 30 дней

Решаем по учебнику: №455, №457 (15 мин)

IV. Итог урока.

Домашнее задание: №456, №458, №460 (2 мин)

Презентация.