Эксперименты по изучению особенностей кипения воды

Разделы: Физика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (31 МБ)


Ход урока

1.Стадии кипения воды.

Кипение – переход жидкости в пар, происходящий с образованием в объеме жидкости пузырьков пара или паровых полостей. Пузырьки растут вследствие испарения в них жидкости, всплывают, и содержащийся в пузырьках насыщенный пар переходит в паровую фазу над жидкостью.

Кипение начинается, когда при нагреве жидкости давление насыщенного пара над её поверхностью становится равным внешнему давлению. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения (Ткип). Для каждой жидкости температура кипения имеет свое значение и в стационарном процессе кипения не меняется.

Строго говоря, Ткип соответствует температуре насыщенного пара (температуре насыщения) над плоской поверхностью кипящей жидкости, так как сама жидкость всегда несколько перегрета относительно Ткип. При стационарном кипении температура кипящей жидкости не меняется. С ростом давления Ткип увеличивается

1.1.Классификация процессов кипения.

Кипение классифицируют по следующим признакам:

1) пузырьковое и пленочное.

Кипение, при котором пар образуется в виде периодически зарождающихся и растущих пузырей, называется пузырьковым кипением. При медленном пузырьковом кипении в жидкости (а точнее, на стенках или на дне сосуда) появляются пузырьки, наполненные паром.

При увеличении теплового потока до некоторой критической величины отдельные пузырьки сливаются, образуя у стенки сосуда сплошной паровой слой, периодически прорывающиеся в объём жидкости. Такой режим называется плёночным.

Если температура дна сосуда значительно превышает температуру кипения жидкости, то скорость образования пузырей на дне становится столь большой, что они объединяются вместе, образуя сплошную паровую прослойку между дном сосуда и непосредственно самой жидкостью. В этом режиме плёночного кипения тепловой поток от нагревателя к жидкости резко падает (паровая плёнка проводит тепло хуже, чем конвекция в жидкости), и в результате скорость выкипания уменьшается. Режим плёночного кипения можно наблюдать на примере капли воды на раскалённой плите.

2) по виду конвекции у поверхности теплообмена ? при свободной и вынужденной конвекции;

При нагревании вода ведет себя неподвижно, и теплота от нижних слоев к верхним передается посредством теплопроводности. По мере нагревания, однако, характер теплопередачи меняется, поскольку запускается процесс, который принято называть конвекцией. Нагреваясь вблизи дна, вода расширяется. Соответственно, удельный вес придонной разогретой воды оказывается легче, чем вес равного объема воды в поверхностных слоях. Это приводит всю водную систему внутри кастрюли в нестабильное состояние, которое компенсируется за счет того, что горячая вода начинает всплывать к поверхности, а на ее место опускается более прохладная вода. Это свободная конвекция. При вынужденной конвекции теплообмен создается с помощь перемешивания жидкости и движение в воде создается за искусственным теплоносителем-мешалкой, насосом, вентилятором и тому подобное.

3) по отношению к температуре насыщения ? без недогрева и кипение с недогревом. При кипении с недогревом пузырьки воздуха растут у основания сосуда, отрываются и схлопываются. Если недогрева нет, то пузырьки отрываясь, растут и всплывают на поверхность жидкости.

4) по ориентации поверхности кипения в пространстве ? на горизонтальных наклонных и вертикальных поверхностях;

Некоторые слои жидкости непосредственно прилегающие к более горячей теплообменной поверхности, нагреваются выше и поднимаются как более легкие пристенные вдоль вертикальной поверхности. Таким образом, вдоль горячей поверхности возникает непрерывное движение среды, скорость которой определяет интенсивность теплообмена поверхности с основной массой практически неподвижной среды

5) по характеру кипения ? развитое и неразвитое, неустойчивое кипение;

С ростом плотности теплового потока растет коэффициент парообразования. Кипение переходит в развитое пузырьковое. Увеличение частоты отрыва приводит к тому, что пузыри догоняют друг друга и сливаются. С увеличением температуры поверхности нагрева число центров парообразования резко возрастает, все большее количество оторвавшихся пузырьков всплывает в жидкости, вызывая ее интенсивное перемешивание. Такое кипение носит развитый характер.

1.2.Разделение процесса кипения по стадиям.

Кипячение воды представляет собой сложный процесс, состоящий из четырех ясно отличимых одна от другой стадий.

Первая стадия начинается с проскакивания со дна чайника маленьких пузырьков воздуха, а также появления групп пузырьков на поверхности воды у стенок чайника.

Вторая стадия характеризуется увеличение объема пузырьков. Затем постепенно количество пузырьков, возникающих в воде и рвущихся на поверхность, всё более увеличивается. На первой стадии кипения слышим тонкий, едва различимый сольный звук.

Третья стадия кипения характерна массовым стремительным подъёмом пузырьков, которые вызывают сначала легкое помутнение, а затем даже “побеление” воды, напоминая собой быстро бегущую воду родника. Это так называемое кипение “ белым ключом”. Оно — крайне непродолжительное. Звук становится похожим на шум небольшого пчелиного роя.

Четвертая — это интенсивное бурление воды, появление на поверхности больших лопающихся пузырей, а затем брызганьем. Брызги будут означать, что вода очень сильно перекипела. Звуки резко усиливаются, но их равномерность нарушается, они как бы стремятся опередить друг друга, нарастают хаотически.

2.Из Китайской церемонии чаепития.

На востоке отношение к чаепитию особое. В Китае и Японии чайная церемония была частью встреч философов и художников. Во время традиционного восточного чаепития произносились мудрые речи, рассматривались произведения искусства. Чайная церемония специально оформлялась для каждой встречи, подбирались букеты цветов. Использовалась специальная посуда для заварки чая. Особенное отношение было к воде, которая бралась для заваривания чая. Важно правильно вскипятить воду, обращая внимание на “циклы огня”, которые воспринимаются и воспроизводятся в кипятке. Вода не должна доводиться до бурного кипения, так как в результате этого уходит энергия воды, которая, соединяясь с энергией чайного листа, и производит в нас искомое чайное состояние.

Есть четыре стадии внешнего вида кипятка, которые соответственно называются “рыбий глаз”, “крабий глаз”, “жемчужные нити” и “бурлящий источник”. Этим четырем стадиям соответствуют четыре характеристики звукового сопровождения закипания воды: тихий шум, средний шум, шум и сильный шум, которым в разных источниках тоже иногда даются разные поэтические названия.

Кроме того, отслеживают и стадии образования пара. Например, легкая дымка, туман, густой туман. Туман и густой туман указывают на переспелость кипятка, который уже не подходит для заваривания чая. Считается, что энергия огня в нем уже настолько сильна, что подавила энергию воды, и в результате вода не сможет должным образом войти в контакт с чайным листом и дать соответствующее качество энергии человеку, пьющему чаю.

В результате правильного заваривания получаем вкусный чай, заваривать который водой, не нагретой до 100 градусов, можно несколько раз, наслаждаясь тонкими оттенками послевкусия от каждого нового заваривания.

-

В России стали появляться чайные клубы, которые прививают культуру чаепития Востока. В чайной церемонии, которая называется Лу Юй, или кипячение воды на открытом огне можно наблюдать все стадии кипения воды. Такие эксперименты с процессом кипения воды можно провести в домашних условиях. Предлагаю несколько экспериментов:

изменения температуры на дне сосуда и на поверхности жидкости;
изменение температурной зависимости стадий кипения воды;
- изменение объема кипящей воды с течением времени;
- распределения температурной зависимости от расстояния до поверхности жидкости.

3.Эксперименты по наблюдению процесса кипения.

3.1. Исследование температурной зависимости стадий кипения воды.

Проводилось измерение температуры на всех четырех стадиях кипениях жидкости. Были получены следующие результаты:

первая стадия кипения воды (РЫБИЙ ГЛАЗ) длилась с 1-ой по 4-ую минуты. Пузырьки на дне появились при температуре 55 градусов (фото 1).

Фото1.

вторая стадия кипения воды (КРАБИЙ ГЛАЗ) длилась с5-ой по7-ую минуты при температуре около 77 градусов. Мелкие пузырьки на дне увеличивались в объеме, напоминая глаза краба. (фото 2).

Фото 2.

третья стадия кипения воды (ЖЕМЧУЖНЫЕ НИТИ) длилась с 8-ой по10-ую минуты. Множество мелких пузырьков образовывали ЖЕМЧУЖНЫЕ НИТИ, которые поднимались к поверхности воды, не достигая её. Процесс начался при температуре в 83 градуса (фото 3).

Фото 3.

четвертая стадия кипения воды (БУРЛЯЩИЙ ИСТОЧНИК) длилась с 10-ой по12-ую минуты. Пузырьки росли, поднимались на поверхность воды, и лопались, создавая бурление воды. Процесс проходил при температуре 98 градусов (фото 4). Фото 4.

Фото 4.

3.2. Исследование изменения объема кипящей воды с течением времени.

С течением времени, объём кипящей воды изменяется. Первоначальный объем воды в кастрюле составлял 1 л. Через 32 минуты объем уменьшился вдвое. Это хорошо видно на фото 5, отмечено красными точками.

Фото 5.

Фото 6.

За следующие 13 минут кипения воды её объем уменьшился на одну треть, эта линия так же отмечена красными точками (фото 6).

По результатам измерений была получена зависимость изменения объема кипящей воды с течением времени.

Зависимость изменения объема кипящей воды от времени.
Измерение 1 2 3 4 5 6 7 8
Объем, л 1 0.75 0.50 0.25 0.125 0.08 0.04 0
Время, мин 0 16 32 45 50 65 69 80

Рис.1. График изменения объема кипящей воды от времени

Вывод: Изменение объема обратно пропорционально времени кипения жидкости(рис.1) до тех пор, пока от первоначального объема не осталось1/25 часть. На последней стадии уменьшение объема замедлилось. Здесь играет роль режим плёночного кипения. Если температура дна сосуда значительно превышает температуру кипения жидкости, то скорость образования пузырей на дне становится столь большой, что они объединяются вместе, образуя сплошную паровую прослойку между дном сосуда и непосредственно самой жидкостью. В этом режиме скорость выкипания жидкости уменьшается.

3.3. Исследование распределения температурной зависимости от расстояния до поверхности жидкости.

В кипящей жидкости устанавливается определённое распределение температуры (рис 2), у поверхности нагрева  жидкость заметно перегрета. Величина перегрева зависит от ряда физико-химических свойств и самой жидкости, а так же граничных твёрдых поверхностей. Тщательно очищенные жидкости, лишённые растворённых газов (воздуха), можно при соблюдении особых мер предосторожности перегреть на десятки градусов.

 

Рис. 2.График зависимости изменения температуры воды у поверхности от расстояния до поверхности нагрева.

По результатам измерений можно получить график зависимости изменения температуры воды от расстояния до поверхности нагрева.

Вывод: с увеличением глубины жидкости температура меньше, причем на небольших расстояниях от поверхности до 1 см температура резко уменьшается, а потом почти не меняется.

3.4.Исследование изменения температуры на дне сосуда и у поверхности жидкости.

Было проведено 12 измерений. Воду нагревали от температуры 7 градусов до момента закипания. Измерения температуры проводились через каждую минуту. По результатам измерения было получено два графика изменения температуры у поверхности воды и на дне.

Рис.3.Таблица и график по результатам наблюдений. (Фото автора)

Выводы: изменение температуры воды на дне сосуда и на поверхности различно. На поверхности температура меняется строго по линейному закону и достигает температуры кипения позже на три минуты, чем на дне. Это объясняется тем, что на поверхности жидкость соприкасается с воздухом и отдаёт часть своей энергии, поэтому прогревается не так, как на дне кастрюли.

Выводы по результатам работы.

Было выяснено, что вода при нагревании до температуры кипения проходит три стадии, зависящие от теплообмена внутри жидкости с образованием и ростом внутри жидкости пузырьков пара. При наблюдении за поведением воды отмечены характерные особенности каждой стадии.

Изменение температуры воды на дне сосуда и на поверхности различно. На поверхности температура меняется строго по линейному закону и достигает температуры кипения позже на три минуты, чем на дне. Это объясняется тем, что на поверхности жидкость соприкасается с воздухом и отдаёт часть своей энергии.

Так же было определено экспериментально, что с увеличением глубины жидкости температура меньше, причем на небольших расстояниях от поверхности до 1 см температура резко уменьшается, а потом почти не меняется.

Процесс кипения происходит с поглощение теплоты. При нагревании жидкости большая часть энергии идет на разрыв связей между молекулами воды. При этом растворенный в воде газ выделяется на дне и стенках сосуда, образуя воздушные пузырьки. Достигнув определенных размеров, пузырек поднимается на поверхность и схлопывается с характерным звуком. Если таких пузырьков много, то вода “шипит”. Пузырек воздуха поднимается на поверхность воды и лопается, если выталкивающая сила, больше силы тяжести. Кипение представляет собой непрерывный процесс, при кипении температура воды равна 100 градусов и не меняется в процессе выкипания воды.

Литература

  1. В.П. Исаченко, В.А. Осипова, А.С. Сукомел “Теплопередача” М.: Энергия 1969
  2. Френкель Я.И. Кинетическая теория жидкостей. Л., 1975
  3. Крокстон К. А. Физика жидкого состояния. М., 1987
  4. П.М. Куреннова “ Русский Народный Лечебник”.
  5. Буздин А., Сорокин В., Кипение жидкостей. Журнал “Квант”, N6,1987
  6. http://aquaterm.ur.ru
  7. www.buyda.ru/Danses/boiling.htm
  8. kvant@mccme.ru
  9. http://www.shaku-wind.ru/another_tea.html