Отрицательные числа

Разделы: Математика


Мы знаем, что если сложить два или несколько натуральных чисел, то в результате получим натуральное число. Если перемножать натуральные числа между собой, то в результате всегда получаются натуральные числа. А какие числа будут в результате, если из одного натурального числа вычесть другое натуральное число? Если из большего натурального числа вычесть меньшее, то результат тоже будет натуральным числом. А какое число будет , если из меньшего числа вычесть большее? Например, если из 5 вычесть 7. Результат такого действия уже не будет натуральным числом, а будет числом меньше нуля, которое мы напишем как натуральное, но со знаком «минус», так называемым, отрицательным натуральным числом. На этом уроке мы познакомимся с отрицательными числами. Поэтому мы расширяем множество натуральных чисел, добавляя к нему «0» и целые отрицательные числа. Новое расширенное множество будет состоять из чисел:

…-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6…

Эти числа называются целыми. Следовательно, результат нашего примера 5 -7 = -2 будет целым числом.

Определение. Целые числа – это натуральные, отрицательные натуральные и число «0».

Изображение этого множества мы видим на градуснике для измерения температуры на улице.

Температура может быть с «минусом», т.е. отрицательной, может быть с «плюсом» т.е. положительной. Температура 0 градусов не положительная не отрицательная, число 0 – граница, которая отделяет положительные числа от отрицательных.

Изобразим целые числа на числовой оси.

Рисунок оси

Мы видим, что на числовой оси существует бесконечное множество чисел . Положительные и отрицательные числа разделены между собой нулем. Отрицательные целые числа, например -1, читаются как «минус единица» или «отрицательная единица».

Положительные целые числа, например «+3» читается как положительная 3 или просто «три», то есть у положительных (натуральных) чисел знак «+» не пишется и слово «положительное» не произносится.

Примеры: отметь на числовой оси +5, +6, -7, -3, -1, 0 и т.д.

При движении вправо по числовой оси числа увеличиваются, а при движении влево - уменьшаются. Если мы хотим увеличить число на 2, мы движемся вправо по координатной оси на 2 единицы. Пример: 0+2=2; 2+2=4; 4+2=6 и т. д. И наоборот, если мы хотим уменьшить число на 3 мы будем двигаться влево на 3 единицы. Например: 6-3=3; 3-3=0; 0-3=-3; и т.д.

1. Попробуй увеличить число (-4) за 3 шага, увеличивая каждый раз на 2 единицы.

Двигаясь по числовой оси, как показано на рисунке, мы получим в результате 2.

2. Уменьши число 6 за шесть шагов, уменьшая его за каждый шаг на 2 единицы.

3. Увеличь число (-1) за три шага, увеличивая его на 4 единицы на каждом шаге.

С помощью координатной прямой легко сравнивать целые числа: из двух чисел больше то, которое на координатной прямой расположено правее, а меньше то, что стоит левее.

4. Сравни числа, поставив знак > или < , для удобства сравнения изобрази их на координатной прямой:

-3 и 2; 0 и -5; -34 и -67; -72 и 0 и т.д.

5. Вспомни, как мы отмечали на координатном луче точки с натуральными координатами. Точки принято называть заглавными латинскими буквами. Нарисуй координатную прямую, и взяв удобный единичный отрезок, изобрази точки с координатами:

А) А(10),В(20),С(30),М(-10),N(-20)
Б) С(100),В(200),К(300),F(-100)
В) U(1000),Е(2000),R(-3000)

6. Запиши все целые числа, расположенные между -8 и 5, между -15 и -7, между -1 и 1.

Сравнивая числа, мы должны уметь ответить на сколько единиц одно число больше или меньше другого.

Нарисуем координатную прямую. Изобразим на ней точки с координатами от -5 до 5. Число 3 на две единицы меньше 5, на единицу меньше 4, на 3 единица больше нуля. Число -1 на единицу меньше нуля, на 2 единицы больше -3.

7. Ответь, на сколько единиц:

-3 меньше 4; -2 меньше 3; -5 меньше -4; 2 больше -1; 0 больше -5; 4 больше -1

8. Нарисуй координатную прямую. Выпиши 7 чисел, каждое из которых на 2 единицы меньше предыдущего, начиная с 6. Какое у этого ряда последнее число ? Сколько может быть всего таких чисел, если количество выписываемых чисел не ограничивать?

9. Выпиши 10 чисел, каждое из которых на 3 единицы больше предыдущего начиная с (-6). Сколько таких чисел может существовать, если ряд не ограничивать десятью?

Противоположные числа.

На числовой оси для каждого положительного числа (или натурального) существует отрицательное число, расположенное слева от нуля на таком же расстоянии. Например: 3 и -3; 7 и -7; 11 и -11.

Говорят, что число -3 является противоположным числу 3, и наоборот, -3 противоположно 3.

Определение: Два числа, которые отличаются друг от друга только знаком называются противоположными.

Мы знаем, что если умножить число на +1, то число не изменится. А если число умножить на (-1), что будет? У такого числа поменяется знак. Например, если 7 умножить на (-1) или отрицательную единицу, то результат будет (-7), число становится отрицательным. Если (-10) умножить на (-1), то получим (+10), т. е. получаем уже положительное число. Таким образом, мы видим, что противоположные числа получаются простым умножением исходного числа на (-1). Мы видим на числовой оси, что у каждого числа существует только одно противоположное число. Например, у (4) противоположное будет (-4), у числа (-10) – противоположное будет (+10). Попробуем найти противоположное число у нуля. Его нет. Т.е. 0 – противоположен самому себе.

А теперь посмотрим на числовой оси, что получится, если сложить 2 противоположных числа. Мы получаем, что сумма противоположных чисел равна 0.

1. Игра: пусть игровое поле разделено пополам на два поля: левое и правое. Между ними проходит разделительная черта. На поле находятся числа. Переход через черту означает умножение на (-1), иначе при переходе через разделительную черту число становится противоположным.

Пусть в левом поле находится число (5). В какое число превратится (5), если пятерка перейдет разделительную полосу 1 раз? 2 раза? 3 раза?

2. Заполни следующую таблицу:

Исходные числа Противоположные числа
6  
-8  
-9  
13  
23  
-12  
-4  
-1  

3. Из множества пар выбери пары противоположных. Сколько таких пар ты получил?

9 ; -100; 1009; -63; -7; -9; 3; -33; 25; -1009; -2; 1; 0; 100; 27; 345; -56; -345; 33; 7.

Сложение и вычитание целых чисел.

Сначала попробуем складывать или вычитать числа на числовой оси.

Сложение (или знак «+») означает движение вправо на числовой оси.

  1. 1+3 = 4

  1. -1 + 4 = 3
  2. -3 + 2 = -1

Вычитание( или знак»-«) означает движение влево на числовой оси

  1. 3 – 2 = 1
  2. 2 – 4 = -2
  3. 3 – 6 = -3
  4. -3 + 5 = 2
  5. -2 – 5 = -7
  6. -1 + 6 = 5
  7. 1 – 4 = -3

Реши следующие примеры с помощью числовой оси:

  1. -3+1=
  2. 2)-4-1=
  3. 4+1=
  4. 3+2=
  5. 3-5=
  6. -5-1=
  7. -2-7=
  8. -1+3=
  9. -1-4=
  10. -6+7=

В Древнем Китае при составлении уравнений коэффициенты уменьшаемых и вычитаемых записывались цифрами разного цвета. Прибыль –обозначали красной краской, а убытки – синей. Пример, продали 3 быка и купили 2 лошади. Рассмотрим другой пример: хозяйка принесла на рынок картошку и продала ее за 300 рублей, эти деньги мы прибавим к имуществу хозяйки и напишем их как +300(красное), а затем она потратила 100 рублей (эти деньги мы запишем как(-100)(синие). Таким образом, получилось, что хозяйка вернулась с рынка с прибылью в 200рублей(или +200). Иначе, числа, записанные красной краской всегда складывали, а записанные синей краской вычитали. По аналогии, будем синей краской обозначать отрицательные числа.

Таким образом, мы можем все положительные числа считать выигрышем, а отрицательные проигрышем или долгом или потерей.

Пример: -4 + 9 = +5 результат (+5) можно рассматривать как выигрыш в какой-либо игре; после того, как сначала было проиграно 4 очка, а затем выиграно 9 очков, то в результате останется выигрыш в 5 очков. Реши следующие задачи:

11. В игре в лото Петя сначала выиграл 6 очков, затем проиграл 3 очка, затем опять выиграл 2 очка, затем проиграл 5 очков. Каков результат игры у Пети?

12 (*). Мама пожила конфеты в вазочку. Маша съела 4 конфеты, Миша съел 5 конфет, Оля съела 3 конфеты. Мама положила еще в вазочку 10 конфет , и в вазочке стало 12конфет. Сколько конфет было сначала в вазочке?

13. В доме одна лестница ведет из подвала на второй этаж. Лестница состоит из двух пролетов по 15 ступенек каждый (один из подвала на первый этаж, а второй с первого этажа на второй). Петя был на первом этаже. Сначала он поднялся по лестнице на 7ступенек вверх, а затем спустился на 13 ступенек вниз. Где оказался Петя?

14. Кузнечик прыгает вдоль числовой оси. Один прыжок кузнечика составляет 3 деления на оси. Кузнечик сначала делает 3 прыжка вправо, а затем 5 прыжков влево. Где окажется кузнечик после этих прыжков, если первоначально он находился в 1)«+1»;2) «-6»;3) «0»;4) «+5»;5) «-2»;6) «+3»;7) «-1».

До сих пор мы привыкли к тому, что рассматриваемые числа отвечали на вопрос «сколько». Но отрицательные числа не могут быть ответом на вопрос «сколько». В житейском смысле отрицательные числа связаны с долгом, проигрышем, с такими действиями, как недолил, недопрыгнул, недовесил и т.д. Во всех этих случаях мы просто вычитаем долг, проигрыш, недовес. Например,

  1. На вопрос « Сколько будет «тысяча без 100»?», мы из 1000 должны вычесть 100 и получим 900.
  2. Выражение «3 часа без четверти» – означает , что мы должны вычесть 15 мин из 3 часов. Получим, таким образом, 2часа 45 мин.

А теперь реши следующие задачи:

15. Саша покупал 200гр. масла, но недобросовестный продавец недовесил 5 гр. Какую массу масла купил Саша?

16.На беговой дистанции в 5 км. Володя сошел с дистанции, не добежав до финиша 200м. Какое расстояние Володя пробежал?

17. Заполняя трехлитровую банку соком мама не долила 100мл сока. Сколько сока получилось в банке?

18. Кино должно начаться без двадцати минут восемь. сколько минут Во сколько часов и во сколько минут должно начаться кино?

19.У Тани было 200руб. и она должна Пете 50 руб. После того, как она отдала долг, сколько денег осталось у Тани?                                                                                                                                

20. Петя с Ваней пошли в магазин. Петя захотел купить книгу за 5 рублей. Но у него оказалось только 3 рубля, и он занял у Вани 2 рубля и купил книгу. Сколько денег оказалось после покупки у Пети?

Решение:

3 - 5= -2 (из того, что у него было до покупки вычтем стоимость покупки, получим -2 рубля , то есть два рубля долга).

21. Днем температура воздуха была 3°тепла или +3°, а ночью 4° мороза или -4°. На сколько градусов понизилась температура? И на сколько градусов ночная температура меньше, чем дневная?

22. Таня договорилась встретиться с Володей без четверти семь. Во сколько часов и во сколько минут они договорились встретиться?

23. Тима с приятелем пошел в магазин покупать книгу, которая стоила 97 рублей. Но когда они пришли в магазин, то выяснилось, что книга подорожала, и стала стоить 105 рублей. Тима занял приятеля недостающую сумму, и все-таки купил книгу. Сколько денег Тима стал должен приятелю?