Математика в наши дни проникает во все сферы жизни. Овладение практически любой профессией требует тех или иных знаний по математике. Особое значение в этом смысле имеет умение смоделировать математически определённые реальные ситуации. Данное умение интегрирует в себе разнообразные специальные умения, адекватные отдельным элементам математических знаний, их системам, а также различные мыслительные приёмы, характеризующие культуру мышления.
В школьной математике знакомство с математическим моделированием основано, прежде всего, на решении текстовых задач. Текстовая задача несет в себе важные элементы математического моделирования. Решая ее, учащийся некие производственные, экономические, житейские связи зашифровывает с помощью математических символов, придавая им абстрактную математическую форму. Решая уравнения, учащийся расшифровывает результат, согласуя его со здравым смыслом. Вот почему решению текстовых задач, этому важнейшему мостику между математикой и ее приложениями должно уделяться особое внимание. При этом представляется, что техника решения текстовых задач может отрабатываться на любых задачах. Было бы наивным думать, что задача на движение, начинающаяся словами "Два автомобиля:" непременно предназначена для будущих водителей, а для школы со спортивным уклоном она должна начинаться словами "Два лыжника:".
Применение на практике различных задач на составление уравнений позволяет создавать такие учебные ситуации, которые требуют от учащегося умения смоделировать математически определённые физические, химические, экономические процессы и явления, составить план действия в решении реальной проблемы. Практика последних лет говорит о необходимости формирования умений решения задач на составление уравнений различных типов ещё и в связи с включением их в содержание ГИА и ЕГЭ.
Однако, анализ образовательной практики по данному направлению говорит о том, что значительная часть учащихся испытывает серьёзные затруднения при решении задач на составление уравнений. В большей степени это связано с недостаточной сформированностью у учащихся умения составлять план действий, алгоритм решения конкретной задачи, культурой моделирования явлений и процессов. Большинство учащихся решают такие задачи лишь на репродуктивном уровне.
Решению текстовых задач предшествует достаточно долгое время, отводимое на отработку решения уравнений. Начиная с 8 класса, как только выучены дробные рациональные выражения, решения задач по алгебре практически все сводятся к решению дробных рациональных уравнений, которые, в свою очередь, включают чаще всего решение квадратных уравнений.
В 8 классе решение задач с помощью дробных рациональных уравнений как показывает опыт эффективнее решать табличным методом, так как он является более наглядным, что важно для подготовки к ГИА в 9 классе.
Все задачи, решаемые с помощью дробных рациональных уравнений, можно разделить на несколько групп:
- Задачи на движение по местности.
- Задачи на движение по воде.
- Задачи на работу.
- Задачи на нахождение дробей и т.д.
Начинать обучение следует с простых задач, условия которых полностью соответствуют названиям основных типов, и сводящихся к решению дробных рациональных уравнений. Затем можно приступать к решению более сложных задач. Рекомендуется подобрать разноуровневые задачи по каждому типу, что дает возможность работать со школьниками разных математических способностей.
Мы стараемся научить детей строить таблицы с данными величинами задачи, слева обозначаются объекты (автомобили, лодки, пешеходы, самолеты и т.д.), сверху в колонках - величины, характеризующие данную задачу, и обязательно единицы их измерения. И дети понимают, что из трех величин, зная две, всегда можно записать третью.
Приведем пример оформления задачи:
Автобус-экспресс отправился от вокзала в аэропорт, находящийся на расстоянии 120км от вокзала. Пассажир, опоздавший на 10 минут на автобус, решил добраться до аэропорта на такси. Скорость такси на 10км/ч больше скорости автобуса. С какой скорость ехал автобус, если он приехал в аэропорт одновременно с такси?
Пусть км/ч - скорость автобуса, тогда составим и заполним таблицу:
Скорость (км/ч) | Время (ч) | Путь (км) | |
Автобус | |||
Такси |
Т.к. по условию задачи пассажир опоздал на автобус на 10 минут =часа, то составим и решим уравнение:
, ОДЗ: >0 (т.к. скорость положительна)
720(х+10) - 720х= х (х+10),
х2+10х-7200=0,
Далее решая квадратное уравнение, получаем:
х1=80,
х2=-90,
-90 - не входит в ОДЗ, значит, скорость автобуса равна 80 км/ч.
Ответ: 80км/ч.
Основная часть класса уверенно заполняет таблицу и составляет уравнение.
В зависимости от выделенного времени, обучаемым может быть предложен широкий спектр мероприятий - семинары, кружки, факультативы, индивидуальные и групповые консультации и т.д., в рамках которых обучаемые более глубоко осваивают решение задач с помощью уравнений.
Практикум по решению задач табличным методом с помощью дробных рациональных уравнений можно провести во второй половине дня на групповой консультации по математике, что целесообразно в рамках школы полного дня.
Список предлагаемых задач:
Числитель обыкновенной дроби на 4 меньше ее знаменателя. Если к числителю этой дроби прибавить 19, а к знаменателю 28, то она увеличится на . Найдите эту дробь.
Теплоход, собственная скорость которого 18 км/ч, прошел 50 км по течению реки и 8 км против течения, затратив на весь путь 3 часа. Какова скорость течения реки?
Два комбайна убрали поле за 4 дня. За сколько дней мог убрать поле каждый комбайн, если одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем другому?
Моторная лодка прошла против течения 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
Расстояние 700 км экспресс проходит на 4 часа быстрее товарного поезда, так как его скорость больше скорости товарного поезда на 20 км/ч. Определите скорость каждого из поездов, если известно, что они движутся с постоянной скоростью без остановок.
Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?
На участке пути длиной 300 км поезд увеличил скорость на 10 км/ч, в результате чего прибыл на конечную станцию на 1 час раньше, чем планировалось по расписанию. С какой скоростью должен был идти поезд по расписанию?
Прозаик хочет набрать на компьютере рукопись объемом 450 страниц. Если он будет набирать на 5 страниц в день больше, чем запланировал, то закончит работу на 3 дня раньше. Сколько страниц в день планирует набирать прозаик?
Дорога между пунктами А и В состоит из подъема и спуска, а ее длина равна 19 км. Пешеход прошел путь из А в В за 5 часов. Время его движения на спуске составило 4 часа. С какой скоростью пешеход шел на спуске, если скорость его движения на подъеме меньше скорости движения на спуске на 1 км/ч?
Велосипедист отправился с некоторой скоростью из города А в город В, расстояние между которыми равно 88 км. Возвращаясь из В в А, он ехал поначалу с той же скоростью, но через 2 часа пути вынужден был сделать остановку на 10 минут. После этого он продолжил путь в А, увеличив скорость на 2 км/ч, и в результате затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.
Количество решаемых задач может меняться в зависимости от отводимого на это время.
Используемая литература:
- И.Л.Бродский, А.М.Видус, А.Б.Коротаев "Сборник текстовых задач по математике для профильных классов".
- В.И. Жохов, Ю.Н.Макарычев, Н.Г.Миндюк "Дидактические материалы по алгебре 8 класс".
- Сборник задач для подготовки и проведения письменного экзамена по алгебре за курс основной школы под редакцией С.А.Шестакова.
- Ш.А.Алимов, М.Ю.Колягин и др. "Алгебра 8 класс".
- А.П.Ершова, В.В.Голобородько, А.С.Ершова "Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса".