Человек с точки зрения механики

Разделы: Физика


Цель образовательная: показать применение законов механики при рассмотрении строения и функций организма человека, закрепление материала по механике.

Развивающая цель: развитие мышления.

Воспитательная цель: формирование познавательного интереса у учащихся: познай себя, и ты познаешь мир.

Оборудование: таблицы «Кровообращение», «Мышцы человека», скелет человека, кинофрагменты.

Ход урока

I. Организационный момент. Цели, план проведения.

Учитель: Как к живой, так и не живой природе применимы физические законы, но они не исчерпывают сложность поведения живой природы. Если рассматривать все знания, накопленные человечеством за 100%, то 95 % - знания о мире, космосе – знания о костном, т.е. неживом веществе планеты. 5% - знания о живом веществе, 0,05% - знания о человеке.

Сегодня на уроке – конференции мы попробуем взглянуть на себя со стороны, основываясь на знаниях, полученных в курсе механики.

1. Сообщение: «Гулливер и лилипуты. Это возможно?»

Не погрешил ли Свифт против физики в своих путешествиях Гулливера великанов и лилипутов? Да, погрешил. Его великаны в 12 раз больше нормального человека. По законам механики человекоподобное существо высотой более 20м должно было бы иметь столь массивный скелет, что, по всей вероятности, оно попросту сломалось бы под его тяжестью. Галилей высказал мысль, что увеличение размеров привело бы к тому что, тело было бы раздавлено или сломано тяжестью своего собственного веса. Человек огромных размеров должен быть толстым и неповоротливым. Растет потребность в пище пропорционально объему тела, а возможность ее добывания уменьшается, вследствие понижения подвижности.

Законы физики определяют некоторый предел размерам животных и человека. Имеются ли у физики возражения против лилипутов? С точки зрения законов механики здесь все в порядке, но возникает вопрос теплообмена. Если у нас в теле выделяется излишняя теплота, мы потеем – т.е. включаем дополнительный механизм охлаждения. Люди – лилипуты Свифта ростом немного больше 10 см вряд ли могли бы существовать. Им приходилось бы много дышать, непрерывно питаться, все время находиться в быстром движении и при этом кутаться в теплые одежды. Так что для человеческого организма существующие размеры являются не только оптимальными, но и, по сути дела единственно возможными.

Учитель: Итак, особенно крупные животные не бывают грациозными, при возрастании размеров произойдет недопустимое возрастание механических нагрузок на организм. Как позаботилась природа о человеке?

2. Сообщение: «Скелет человека» кинофрагмент.

Как же работают наши кости? Как и строительные элементы, они работают в основном на сжатие – растяжение и на изгиб. Оптимальной конструкцией является кость с частично отсутствующей сердцевиной – трубчатые кости. Развитию костной системы в процессе эволюции привело к уменьшению массы человека примерно на 25% при сокращении прочности скелета. Достаточно ли прочны наши кости? Причиной высокой прочности костей является их композиционная природа. Именно она одновременно обеспечивает и большую твердость костей скелета, и их эластичность.

Кости нашего скелета по прочности превосходят и гранит, и бетон. Однако, чтобы избежать разрушения тела, возникающие в нем механические напряжения не должны превышать предел прочности больше допустимого напряжения, это называется запасом прочности.

На примере человека можно проследить все виды деформации. Деформации сжатия испытывают позвоночный столб, нижние конечности и покровы ступней. Деформации растяжения – верхние конечности, связки, сухожилия, мышцы. Изгиба – позвоночник, кости таза; кручения – шея при повороте головы, туловище в пояснице при повороте, кисти рук при вращении и т.д.

Бедренная кость, поставленная вертикально, может выдержать давления груза в полторы тонны (автомобиль «Волга»). Какие бы нагрузки не прикладывались, кость никогда не работает на излом, а только на растяжение и сжатие. Прекрасной иллюстрацией прочности костей человека может служить скелет каратиста. Каратист концентрирует свой короткий удар на очень малом участке тела, не делая при этом длинных махов руками. Поэтому удар каратиста может разрушать ткани и кости противника, на которые он направлен. Хорошо тренированный каратист может в течение нескольких миллисекунд нанести удар в несколько киловатт. Рука каратиста не ломается при ударе даже о бетонный брусок, который частично объясняется большей прочностью кости по сравнению с бетоном. Кроме того, между костью и бруском бетона всегда находится эластичная ткань, амортизирующая удар.

Учитель: наш организм создан природой с учетом знаменитого «золотого правила механики».

3. Сообщение: «Рычаги в организме человека»

В скелете животных и человека все кости, имеющие некоторую свободу движения, являются рычагами. Например, у человека – кости конечностей, нижняя челюсть, череп, фаланги пальцев. Рычажные механизмы скелета обычно рассчитаны на выигрыш в скорости при потери в силе. Рассмотрим условия равновесия рычага на примере черепа (приложение №1). Здесь ось вращения рычага О проходит через сочленение черепа с первым позвонком. Спереди от точки опоры на относительно коротком плече действует сила тяжести головы , позади – сила тяги  мышц и связок, прикрепленных к затылочной кости. Рука тоже представляет собой совершенный рычаг, точка опоры которого находится в локтевом суставе. Действующей силой  является сила двуглавой мышцы (бицепс), которая прикрепляется к бугорку лучевой кости, преодолеваемым сопротивлением является груз , приложенный к кисти. Под действием силы рычаг – рука поднимает груз, находящийся на ладони. Чертёж показывает этот момент вращения мышечной силы  (произведение силы на её плечо) равен в данном случае  Момент вращения груза M будет равен .Если пренебречь массой лучевой кости, то в состоянии равновесия =

Точка приложения силы находится на расстоянии =3 см (т.е. плечо силы  =3 см), а плечо силы тяжести =30 см, отсюда следует

Таким образом, чтобы удержать груз M, необходимо усилие мышцы, в десять раз превышающую величину груза (приложение №2). То, что проигрываем здесь в силе, не имеет особого значения, - мышца обладает достаточно большой силой. Зато очень важно то, что, проигрывая в силе, мы выигрываем в других отношениях. Небольшое сокращение длины мышцы позволяет в данном случае осуществить значительное перемещение ладони с грузом (мы можем поднять груз даже к плечу). Кроме того, мы выигрываем в скорости перемещения. Мышцы не могут очень быстро сокращаться; к счастью, при таком рычаге этого не требуется: скорость перемещения ладони с грузом оказывается в 10 раз больше скорости сокращения мышцы. Другими словами, проигрывая в 10 раз силе, мы во столько же раз выигрываем в длине и скорости перемещения груза. Другим примером работы рычага является действие свободы стопы при подъеме на полупальцы. Опорой О рычага, через которую проходит ось вращения, служат головки плюсневых костей. Преодолеваемая сила  – вес всего тела – приложена к таранной кости. Действующая мышечная сила  осуществляющая подъем тела, передаётся через ахиллово сухожилие и приложена к выступу пяточной кости (приложение №3).

Почему вытянутой рукой нельзя удержать такой же груз, как согнутой? Когда рука вытянута, то направление действия мышечной силы составляет малый угол с продольной осью вращения рычага (приложение №4). Чтобы в этом случае удержать груз такой же, как и при согнутой руке, нужно значительно увеличить мышечное усилие. При одном и том же мышечном усилии вытянутой рукой можно удержать значительно меньший груз, чем согнутой.

Учитель: Поражает исключительная целесообразность устройства нашей опоры – двигательной системы. Форма костей и суставов, как мы выяснили, обеспечивает человеку наиболее выгодные условия для движения. Ещё сложнее строение и взаимоотношение мышц – двигателей нашего тела.

4. Сообщение: «Мышцы и движение» кинофрагмент.

Одни из самых сильных мышц у человека те, что расположены по обе стороны рта и отвечают за сжатие челюстей. Они способны развивать усилие до 700H! Согласно исследованиям у плачущего человека задействованы 43 мышцы лица, в то время, как у смеющегося всего 17 таким образом смеяться энергетически выгодно. Если бы все мышцы человека напрягались, они бы вызвали силу давления, примерно равную 250 кН.

Строение и форма мышц зависит от той работы, которую приходится им чаще всего выполнять. Сила, развиваемая мышцей, является геометрической суммой сих отдельных волокон. Поэтому, чем толще мышца, тем она сильнее - например икроножная мышца. Она может поднять груз массой до 130 кг. В среднем же мышцы человека на каждый 1 см2 сечения развивают силу 160 Н. Эта сила может изменяться, т.к. определяется не только ЦНС, но и внешними механическими условиями, нагрузкой.

Если вы подняли гирю в несколько килограммов и держите её на весу, то с точки зрения механики вы совершили работу только при поднятии груза, но держать гирю на весу не на много легче, чем поднять её вверх, хотя А=О. Это объясняется тем, что мышцы приводящие в движении руки или ноги, способны к быстрым сокращениям, но каждое сокращение длится малое время. Сокращение мышцы вызывается сигналом, поступающим к ней по нервам головного мозга. Если длительное время держать груз на весу, такие сигналы непрерывно друг за другом поступают к мышце. Когда приходит очередной сигнал, мышца сокращается, но тут же сама по себе расслабляется впредь до получения следующего сигнала. В результате груз, который вы держите, испытывает малые колебания вверх и вниз. Рука дрожит, что особенно заметно, если гирю держать достаточно долго. Скелетные мышцы не способны удерживать груз в строго определенном положении. При периодическом поднятии груза на малые расстояния работа будет совершаться. Поэтому рука устает, не только когда вы поднимаете груз, но и когда держите его на весу.

Учитель: Основой основ для жизни человека является кровь и система кровообращения. Можем ли мы применить закон механики к движению крови в организме человека?

5. Сообщение: «Движение крови по сосудам. Закон Бернулли».

Сосуды пронизывают все участки нашего тела. Сердце – это насос, нагнетающий кровь в артериальную систему. Кровь течет по разветвляющимся артериям до капилляров. Их общая длина 100 тыс. км. Сокращаясь, мышца давит на стенки вен, которые сжимаются и выдавливают кровь по направлению к сердцу, т.к. клапаны, находящиеся выше, открываются, а находящиеся ниже – закрываются.. Чем объяснить, что давление крови с удалением от левого желудка сердца падает? По различным участкам кровеносного русла кровь течет с разной скоростью. Причина? Данное явление не связано с силами трения, а связано с уравнением Бернулли.

Чем больше сечение, тем скорость течения жидкости по ней меньше. Сердце работает частотой 60 Гц, следовательно, струя должна быть прерывистой, а она непрерывна. Пульсация сглаживается т.к. кровеносные сосуды эластичны. Поэтому когда кровь поступает в аорту, та расширяется до тех пор, пока приток крови не прекратится. После этого силы упругости растянутой стенки, стремясь вернуть её к первоначальным размерам, выжимают кровь в более удаленный от сердца участок артерии. Этот участок артерии растягивается, и все начинается сначала.

В результате после каждого сокращения сердца вдоль артерии в направлении от сердца к периферии пробегает волна деформации, подобна тому, как распространяются волны на поверхности воды от брошенного в неё камня. И если на артерию, находящуюся вблизи поверхности тела (например – у запястья), наложить пальцы, то можно ощутить эти волны в виде толчков пульса. Удивительный двигатель – сердце, в среднем за сутки сокращается 100 тыс. раз и перекачивает при этом 10 тыс. литров крови.

6. Сообщение: «Равновесие. Центр тяжести. Человек.»

Центр тяжести (так называют точку притяжения силы тяжести) существует у любого тела. Иногда точку приложенной силы тяжести называют центром масс. Это ни какая-нибудь выделенная точка, она ничем не отличается от других и, более того, может вообще находиться вне тела как у бублика или стула. Давайте рассмотрим несколько ситуаций, в которых мы были или можем быть:

  1. Может ли человек, упершийся правой ногой и правым плечом в стену, поднять левую ногу и не потерять равновесие? (нет, так как вертикальная линия, проходящая, через центр тяжести, будет так же проходить через ступню правой ноги);
  2. Почему человек, несущий груз на спине, наклоняется вперед? (груз изменяет положение центра тяжести, и человек, находящийся в неустойчивом положении наклоняется, чтобы вертикаль, проходящая через центр тяжести, прошла через центр опоры);
  3. Почему трудно стоять на одной ноге? (площадь опоры мала. Поэтому человеку, стоящему на одной ноге, трудно удержать равновесие).
  4. Почему при ходьбе люди размахивают руками? (когда человек перемещает ногу вперед, вперед смещается центр тяжести. Чтобы сохранить первоначальное положение центра тяжести, руку отводят назад, такое чередование повторяется при каждом шаге).

Учитель: Человеку было недостаточно просто ходить, ему захотелось бегать, прыгать; ставить рекорды, летать и возникла новая проблема – действие ускорения на человека.

7. Сообщение: «Вестибулярный аппарат. Действие ускорений»

Изучая законы Ньютона, мы много говорили об ускорении.

Рассмотрим, как влияют ускорения на организм человека. Нервные импульсы, сигнализирующие о пространственном перемещении тела, в том числе и головы, поступают в специальный орган – вестибулярный аппарат. Вестибулярный аппарат информирует головной мозг об изменении скорости движения. Характеристика пороговых величин раздражений вестибулярного аппарата, доходящих до сознания человека, а также средние ускорения при разных движениях, следующие: карусель, а = (3-4) м/с2 ; лифт а = 2 м/с2 выполнение фигур высшего пилотажа а = (20-80) м/с2 ; разбег спортсмена на старте а = (8-10) м/с2 ; катапультирование из самолета а = 200 м/с2 . Каковы воздействия ускорений?

Если на человека действует ускорение в направлении от головы к ногам, численно равное 2g, то ощущается давление всего тела на сиденье, напряжение мышц, но нарушений самочувствия не наблюдается. При а = (2-4)g требуется большие усилия для удержания головы в вертикальном положении, ощущается затруднительность дыхания, неприятные, а подчас болезненные ощущения смещения внутренних органов. Уменьшается точность движений, увеличивается число ошибок при оценке показаний приборов самолета, из-за смещения подвижных участков кожи на лице меняется внешний облик человека. При а = (4-5)g помимо этих явлений часто возникают зрительные нарушения («серая пелена») при дальнейшем увеличении ускорений а = (5-6)g свыше 5 сек. Могут возникнуть нарушения сознания. Все эти воздействия носят временный характер. Ещё К.Э.Циолковский предлагал для повышения выносливости человека к действию ускорений помещать его тело в жидкость одинаковой с ним плотности. Подобная защита достаточно широко распространена в природе. Так защищается зародыш в яйце, так предохраняется плод в утробе матери.

Учитель: Кому принадлежат слова: «Человечество не останется вечно на земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе околосолнечное пространство».

8. Сообщение: «Невесомость и человек»

Слова «антигравитация», «антигравитационный» долгое время казались выходцами из фантастики. А между тем мы буквально на каждом шагу только тем и занимаемся, что преодолеваем земное притяжение. Кровь в наших жилах притягивается Землей и понятно, что есть в организмах человека и животного специальные механизмы, обеспечивающие равномерное распределение крови по телу. Есть знаменитая древняя формула: лучше сидеть, чем стоять, лучше лежать, чем сидеть. Физический смысл этого изречения, при желании, можно отнести к снабжению организма кровью. Ведь когда лежащий человек встает или стоящий ложится, он коренным образом меняет свое положение в поле земного тяготения. В легких человека находятся особые пузырьки – альвеолы, через их стенки кислород поступает в кровь. В верхние отделы легких крови поступает меньше чем в нижние, это связано только с тем, что в распределение крови по организму важную роль играет гравитация. У лежащего на спине человека легкие заполняются кровью более равномерно. Зато, как показали эксперименты, жизненная емкость легких у сидящего человека больше, чем у лежащего, и еще больше она у стоящего. Уровень обмена энергии у человека при стоянии на 10-18% больше, чем когда он лежит на спине.

Каков реальный срок безвредного пребывания в невесомости? По мнению многих специалистов, такой срок должен существовать и считаться с этим необходимо. Тренировки, тренировки и еще раз тренировки. Мышцы, во всяком случае, большинство из них можно так поддерживать в работоспособном и здоровом состоянии. Хуже дело обстоит с костями скелета. Ноги несут обычно на себя тяжесть всего тела. Как вернуть им в этом отношении хотя бы ощущение нагрузки? В невесомости ткани обескровливаются, а кровь, наоборот, становится сильно разбавлена тканевой жидкостью. Расширяются центральные вены и предсердия, чтобы пропускать избыток крови (увы, кажущийся) и удалять его через почки. С жидкостью из организма уходит и кальций.

К невесомости не приспособлен механизм снабжения органов тела кровью через артерии. Все космонавты говорили о временных приливах крови к голове, видели, как у товарищей по кабине космического корабля становятся одутловатыми лица и даже морщины разглаживаются. Это организм гонит кровь в голову с силой, преодолевать – то в невесомости нечего.

Учитель: Существует старинная притча о мудреце и юноше. Юноша спросил: «ты знаешь намного больше, чем я; почему же, отвечая на вопрос, ты сомневаешься чаще, чем я?» и тогда мудрец нарисовал палкой на песке два круга; малый внутри большого, «Посмотри, - сказал он юноше, - внутри малого круга заключено все, что знаешь ты, а в большом – все, что знаю я. Разве не ясно, что чем больше круг, тем длиннее ограничивающая его окружность, а значит, и больше соприкосновение с областью неопознанного?»

Не только поэты, но и физики сомневались временами в познаваемости природы. Однако подобные кризисы неизбежно преодолевались, завершаясь, раз новым качественным скачком в процессе научного познания.

II. Подведение итогов конференции.

Используемая литература:

  1. Л.В. Тарасов «Физика в природе», Москва, «Просвещение», 1988г.
  2. Ц.Б. Кац «Биофизика на уроках физики», Москва, «Просвещение», 1989г.
  3. В.М. Варикаш «Физика в живой природе», Минск, «Народная асвета», 1987г.
  4. «Физика» №45 (2000г.), №23 (2003г.)
  5. Л. Эллиот «Физика», Москва, «Наука»,1995г.