Решение взаимно обратных задач в начальной школе (простые задачи)

Разделы: Начальная школа


ХОД УРОКА

1. Введение.

Перед нашей школой всегда стояла задача построения такой методической системы, которая обеспечивала бы резкое повышение качества знаний при значительной экономии времени, расходуемого на изучение материала. В наше время при все возрастающем потоке информации эта проблема стоит особенно остро.

Еще в 60-е годы Комиссией по определению содержания обучения математике, работающей в АПН СССР, был разработан проект программы по математике. Авторы проекта одним из главных средств ускоренного и сознательного изучения материала в школе считали изменение структуры существующих программ, осуществление более целесообразной группировки вопросов, рациональной группировки вопросов, рациональной последовательности разделов, то есть применение метода противопоставления на уроках математики.

Общепринятая традиционная система обучения математике соблюдает принцип раздельного изучения взаимосвязанных понятий или преобразований. При одновременном изучении взаимосвязанных вопросов в пределах одних и тех же уроков дидактической единицей усвоения становится более крупная единица знаний, чем в случае раздельного изучения их. Переход в обучении к более крупным дидактическим единицам усвоения знаний дает экономию сил и времени.

При изучении задач в курсе математики, как простых, так и сложных, как обычных арифметических, так и типовых оказывается высоко эффективным систематическое применение так называемого метода обратных задач.

Успех обучения решению задач посредством преобразования прямой задачи в обратные задачи объясняется как первопричиной тем, что такой путь заставляет поднимать из сферы подсознания наибольшее разнообразие связей, заключенных в содержании задачи. Это и обеспечивает – на языке дидактики – глубокое и прочное усвоение материала.

На составление и решение обратной задачи уходит несравненно меньше времени, чем на решение новой задачи, так как числовые данные и сюжет остаются прежними; производится здесь лишь логическая операция по переосмыслению ролей чисел; неизвестное в прямой задаче становится известным и наоборот.

Поэтому я взяла для изучения и последующей работы тему “Решение взаимно обратных задач в начальной школе”.

На мой взгляд, самое трудное в начальной школе – научить ребенка грамотно писать, а самое трудное в математике – научить решать задачи.

В процессе работы мне хотелось повысить процент способных детей и уменьшить процент слабых.

Кроме того, в своей работе я стремлюсь к тому, чтобы как можно больший процент детей имел качественный показатель знаний по математике. Далее я опишу, как я этого добиваюсь и каковы результаты молей работы.

Я ознакомилась с мнением различных ученых-методистов (смотреть список литературы) по вопросу классификации задач и решению взаимно обратных задач, как по традиционной, так и по развивающей методике.

Работа со взаимно обратными задачами просматривается у Аритской Н.И., у Свечникова А.А., но у Аритской И.И. нет четкой классификации задач, также, как у Истоминой Н.Б.

Классификация сложных задач в принципе сходна у Эрдниева П.М., Свечникова А.А., Баитовой М.А. но простые задачи Свечников А.А. и Баитова М.А. классифицируют несколько иначе, чем Эрдниев П.М.

За основу я взяла работу над задачами по Эрдниеву П.М., так как на сегодняшний день более четкой классификации задач и методики работы над взаимно обратными задачами я пока не вижу.

Следует отметить существенно важные дидактические достоинства метода обратных задач.

Во время преобразования задачи учащийся выявляет и использует взаимно обратные связи между величинами задачи:

Прямая задача

Ц.

К.

С.

30 р.

6 к.

? р.

Обратная задача

Ц.

К.

С.

30 р.

? к.

180 р.

Во время преобразования учащийся практически познает связи между действиями. Полезно, например, обратить внимание учащихся на то, что количество действий при решении прямой и обратной задач совпадает (это правило нарушается крайне редко). Кроме того, полезно знать учащимся следующее явление: каждому действию прямой задачи соответствует действие той же ступени в обратной задаче.

Количество комбинаций при составлении обратной задачи ограниченно: оно равно количеству данных в задаче.

Решая обратную задачу, учащийся перестраивает суждения и умозаключения, использованные при решении прямой задачи, преодолевая при этом в мышлении инерцию действий, выполненных при решении прямой задачи.

Решение обратной задачи представляет проверку решения прямой задачи, то есть при этом возникают благоприятные условия для потоков информации по целям обратных связей в мыслительных процессах (систематическое сочетание прямых и обратных задач вырабатывает важное качество личности – чувство самоконтроля).

Учащиеся, составляя обратные задачи, знакомятся со значительно большим разнообразием задач, чем в традиционных задачниках.

При составлении и решении обратных задач выдвигается на первый план анализ и видоизменение математических зависимостей.

Итак, для развития мышления ценны не столько прямые и обратные задачи, взятые вне времени сами по себе, а наиболее важный познавательный элемент заключается в процессе преобразования одной задачи в другую, в сравнении условий, решений, ответов задач, то есть тех “невидимых”, трудно уловимых и трудно изобразимых при логическом анализе элементов мысли, которые связывают решения обеих задач (прямой и обратной).

Однако нельзя забывать, что переходы эти осуществляются во времени: чем меньше интервал времени между противоположными процессами решения взаимно обратных задач, тем быстрее и чаще будут совершаться эти переходы и тем прочнее будут сохраняться в памяти следы этих переходов, то есть тем более глубокими и основательными окажутся осваиваемые знания.

2. Решение простых задач на сложение и вычитание.

Разновидности задач на сложение и вычитание в учебниках математики по традиционной системе как бы перетасованы, что затрудняет возникновение циклических связей мысли.

Задачи на сложение и вычитание целесообразно рассматривать следующими циклами:

  • задачи на нахождение суммы и неизвестного слагаемого;
  • задачи на нахождение разности, уменьшаемого, вычитаемого;
  • задачи на увеличение и уменьшение числа на несколько единиц;
  • задачи на разностное сравнение величин.

2.1. Задачи на нахождение суммы и неизвестного слагаемого.

Прямая задача

Катя купила 9 открыток, а Надя 8 открыток. Сколько всего открыток купили девочки?

Краткая запись:

К. Н. Всего
9 от. 8 от. ? от.

Решение: 9 + 8 = 17 (от.)

Ответ: девочки купили 17 открыток.

Дается название вида задачи, вводится таблица видов простых задач.

Обратная задача.

Какие числа были даны в задаче?

Какие числа мы нашли, решая задачу?

Составим новую задачу, для чего неизвестным числом сделаем одно из двух других чисел, например, 9 открыток. Сформулируйте эту задачу.

Катя купила несколько открыток, а Надя 8 открыток. Всего девочки купили 17 открыток. Сколько открыток купила Катя?

Краткая запись:

К. Н. Всего
? от. 8 от. 17 от.

Решение: 17 – 8 = 9 (от.)

Ответ: Катя купила 9 открыток.

Сравните решения задач:

  1. Обе задачи решаются одним действием.
  2. Прямая задача – действием сложения, обратная – действием вычитания.

Вводится термин – обратная задача. Определяется вид задачи – нахождение неизвестного слагаемого.

Аналогично вводится вторая обратная задача.

Введение обратных задач не изолированно от прямой, а через нее имеет следующие положительные стороны.

  1. Достигается ознакомление не только с новой задачей, но и повторение старой.
  2. Учащиеся усваивают связи между задачами, умозаключения здесь возникают в цикле, во взаимопревращениях друг в друге.
  3. На следующем этапе мы учимся делать обратные преобразования: дается одна обратная задача, решается, а к ней составляется прямая и другая обратная. Причем, здесь уместно ввести решение задачи уравнением.

Саша купил несколько тетрадей в линейку и 7 тетрадей в клетку. Всего он купил 13 тетрадей. Сколько тетрадей в линейку купил Саша?

  1. Читаем условие: “Саша купил несколько тетрадей в линейку”. Сколько было – неизвестно, обозначаем “окошечком”.
  2. Читаем дальше: “и 7 тетрадей в клетку”. Пишем: 7 .
  3. Всего у него было 13 тетрадей. Пишем: 13 (? 7 13)
  4. При каком действии получается 13? (? + 7 = 13)

Вместо “окошечка” обозначаем неизвестное число буквой Х. Получается уравнение: Х + 7 = 13

Как решить задачу? (Найти неизвестное слагаемое)

Решение:

Х = 13 – 7

Х = 6

6 + 7 = 13

13 = 13

Эта задача преобразуется в прямую и во вторую обратную.

Совершенно аналогично проводим обучение решению задач на нахождение третьего (четвертого) слагаемого.

В одном ящике 23 кг яблок, во втором – 20 кг, а в третьем 18 кг яблок. Сколько кг яблок в трех ящиках?

Решение: 23 + 20 + 18 = 61 (кг)

Составим обратную задачу:

1 ящ. 2 ящ. 3 ящ. Всего
? кг 20 кг 18 кг. 61 кг

Как найти неизвестное слагаемое? (Из суммы вычесть известное слагаемое)

Как это можно сделать?

1 способ: 61 – (20 + 18) = 23 (кг)

2 способ: (61 – 18) – 20 = 23 (кг)

3 способ: (61 – 20) – 18 = 23 (кг)

Таким образом. При решении задач на нахождение неизвестного слагаемого появляется возможность ознакомления с несколькими способами решения одной и той же задачи.

Сколько еще обратных задач можно составить? (Еще 2 задачи, каждую решить разными способами)

Часто учителя начальных классов выбирают из нескольких способов простейший и им ограничиваются. Но нужно помнить старое дидактическое правило: иногда полезнее одну задачу решить разными способами, чем несколько задач одним и тем же способом.

Естественно, не всегда задачи на уроке мы решаем с преобразованием в обратные. Можно обратную задачу сформулировать и р6ешить устно, сформулировать условие без ее решения, выяснив, какие числа даны, что надо найти и т.д.

2.2. Задачи на нахождение разности, уменьшаемого и вычитаемого.

Прямая задача.

У Веры было 87 рублей. Она купила книгу за 37 рублей. Сколько денег у нее осталось?

Краткая запись:

Было Израсходовано Осталось
87 р. 37 р. ? р.

Решение: 87 – 37 = 50 (р.)

Какие числа были даны в задаче?

Что мы узнали после решения? (50 р. – сколько осталось, разницу между числами)

Определяем вид задачи: нахождение остатка (разности).

Составим обратную задачу, сделав известным число 50 р., а неизвестным то, что было.

У веры было несколько рублей. Она купила книгу за 37 рублей, после этого у нее осталось 50 рублей. Сколько денег было у Веры до покупки?

Эту задачу уместно решить уравнением.

  1. Сколько денег было у Веры? (Неизвестно – Х)
  2. Сколько денег она израсходовала?
  3. Сколько у нее осталось?
  4. Вопрос задачи?

Запись на доске: Х 37 50

  1. Чтобы получилось уравнение, нужно эти числа связать знаками. Если человек уплатил (истратил, израсходовал) деньги. То у него их стало больше или меньше?
  2. Какое действие надо выполнить? (Х – 37 = 50)
  3. У веры осталось 50 р., да она израсходовала 37 р. Сколько денег у нее было вначале: больше, чем 50, или меньше?
  4. Почему больше?
  5. На сколько больше?
  6. Как узнать, сколько денег было вначале?

Х – 37 = 50

Х = 37 + 50

Х = 87

87 – 37 = 50

50 = 50

Ответ: у Веры было 87 р.

Какой компонент находили?

Каким действием?

Вид задачи: нахождение уменьшаемого.

Сравнение прямой и обратной задач:

Решены одним действием, прямая задача – вычитанием, обратная – сложением.

На последующих уроках решаются задачи в иной последовательности: сначала на нахождение уменьшаемого, затем она преобразуется в задачу на нахождение разности.

Затем мы решаем задачи на нахождение разности, когда вычитаемых несколько.

Прямая задача.

В магазине было 90 коробок конфет. В первый день продали 30 коробок, во второй день – 32 коробки. Сколько коробок конфет продали в третий день?

К этому времени мы изучили следующие свойства:

  • прибавление суммы к числу,
  • прибавление числа к сумме,
  • вычитание суммы из числа,
  • вычитание числа из суммы.

Поэтому решение подобных задач разными способами не вызывает особых затруднений у детей.

Краткая запись:

Было Израсходовано Осталось
90 к. 30 к. и 32 к. ? р.

Решение: 1 способ – 90 – (30 + 32) = 28 (к.)

2 способ – (90 – 30) – 32 = 28 (к.)

3 способ – (90 – 32) – 30 = 28 (к.)

Что мы находим в этой задаче?

Составьте обратную задачу на нахождение уменьшаемого.

В магазине было несколько коробок конфет. В первый день продали 30 коробок, во второй – 32 коробки, в третий – оставшиеся 28 коробок. Сколько коробок конфет было в магазине первоначально?

Краткая запись: ? к. 30 к. и 32 к. 28 к.

Решение:

1 способ – (30 + 32) + 28 = 90 (к.)

2 способ – (30 + 28) + 32 = 90 (к.)

3 способ – (32 + 28) + 30 = 90 (к.)

Вслед за задачей на нахождение уменьшаемого вводится задача на нахождение вычитаемого.

Прямая задача.

К обеду в столовой сделали 70 бутербродов. За обедом съели 62 бутерброда. Сколько бутербродов осталось в столовой?

Краткая запись:

Было Израсходовано Осталось
70 б. 62 б. ? р.

Решение: 70 – 62 = 8 (б.)

Изменим краткую запись: 70 б. ? б. 8б.

Составьте по ней обратную задачу. К обеду в столовой сделали 70 бутербродов. После обеда осталось 8 бутербродов. Сколько бутербродов съели за обедом?

Эту задачу удобнее решить уравнением.

Сколько было сделано бутербродов?

Сколько съели?

Сколько осталось? 70 Х 8

Как связать эти три числа?

70 – Х = 8

Х = 70 – 8

Х = 62

70 – 62 = 8

8 = 8

Какой компонент находили?

Определите вид задачи. (Нахождение вычитаемого)

Далее решаются задачи на преобразование задач на нахождение вычитаемого в задачи на нахождение разности.

В конце изучения данной темы необходимо решать изолированные задачи без составления к ним обратных, а иногда решать все три задачи по одной и той же ситуации.

2.3. Задачи на уменьшение и увеличение числа на несколько единиц и задачи на разностное сравнение величин.

К введению понятия разностного сравнения мы находим через прямую задачу на увеличение и уменьшение числа на несколько единиц.

Прямая задача.

Набор цветных карандашей стоит 16 рублей, а набор фломастеров на 12 рублей дороже. Сколько стоит набор фломастеров?

Краткая запись:

К. Ф.
16 р. на 12 р. дороже ? р.

Решение: 16 + 12 = 28 (р.)

Обратная задача: ? р. на 12 р. дороже 28 р.

Набор карандашей стоит несколько рублей. Набор фломастеров на 12 рублей дороже. Он стоит 28 рублей. Сколько стоит набор карандашей?

Производим рассуждения и преобразования: Набор фломастеров на 12 р. дороже, значит, набор карандашей на 12 р. дешевле. Поэтому получаем следующую задачу:

Набор фломастеров стоит 28 руб., набор карандашей на 12 руб. дешевле. Сколько стоит набор карандашей?

Краткая запись:

К. Ф.
? р. на 12 р. дешевле 28 р.

Решение: 28 – 12 = 16 (р.)

Преобразовываю схему:

К. Ф.
16 р. 28 р.

на ? р. дешевле

Составьте обратную задачу:

Набор карандашей стоит 16 рублей, а набор фломастеров 28 рублей. На сколько рублей фломастеры дороже карандашей? (На сколько рублей карандаши дешевле фломастеров?)

Решение: 28 – 16 = 12 (р.)

Обязательно сравниваем решение прямой и обратных задач.

На следующих уроках сначала решается задача на разностное сравнение, которая преобразуется в две другие задачи. После этого решаем задачи на сложение и вычитание, выраженные в косвенной форме.

Таким образом, взаимосвязь между задачами на сложение и вычитание укладывается в таблицу (прилагается). В ней обозначены три вида задач на сложение и шесть видов задач на вычитание.

Чтобы обобщить эти задачи и подготовить почву для свернутого решения этих задач, полезно упражнять учащихся по мере изучения материала в составлении нескольких видов задач к одному выражению, например, 15 + 3.

Составьте три задачи, чтобы в них использовались слова:

“больше на…”

“сколько вместе”

“сколько было вначале”

Например:

  1. В одном ящике было 15 кг яблок, в другом на 3 кг больше. Сколько килограмм яблок во втором ящике?
  2. В одной коробке 15 кг конфет, в другой – 3 кг. Сколько конфет в двух коробках.
  3. За обедом съели 3 яблока, после чего в вазе осталось 15 яблок. Сколько яблок было в вазе вначале?
  4. Эти упражнения содействуют развитию множественных связей (ассоциаций). В данном случае множественная связь имеет следующее строение:

Сложение –

“увеличить на”

“сколько вместе”

“сколько всего”

“сколько было вначале”.

- Составьте четыре задачи на вычитание: 70 – 30.

  1. У мамы было 70 рублей. Она купила апельсинов на 30 рублей. Сколько денег у ней осталось?
  2. У мамы было 70 рублей. Она истратила несколько рублей на покупку апельсинов, после чего у нее осталось 30 рублей. Сколько денег мама истратила на апельсины?
  3. У Коли 70 марок, у Пети на 30 марок меньше. Сколько марок у Пети?
  4. Зеленая лента 70 см, белая – 30 см. на сколько см зеленая лента длиннее белой?

Здесь формируется следующий пучок ассоциаций:

Вычитание –

“сколько осталось”

“сколько истратили”

“меньше на”

“на сколько меньше (больше)”.

3. Литература.

      № п/п

      Автор

      Издание

      Выходные данные

      1.

      Моро М.И. Математика, 1 класс

      Математика, 2 класс

      Математика, 3 класс

      М., Просвещение, 2001.

      М., Просвещение, 2002.

      М., Просвещение, 2003.

      2.

      Аритская И.И. Математика, 1 класс

      Математика, 2 класс

      Математика, 3 класс

      Математика, 4 класс

      М., Просвещение, 2000.

      М., Просвещение, 2001.

      М., Просвещение, 2002.

      М., Просвещение, 2003.

      3.

      Истомина Н.Б. Математика, 1 класс

      Математика, 2 класс

      Математика, 3 класс

      Математика, 4 класс

      С., Асс XXI век, 2002.

      С., Асс XXI век, 2003.

      С., Асс XXI век, 2004.

      С., Асс XXI век, 2005.

      4.

      Аритская И.И. Обучаем по системе Занкова 1 кл., 2 кл., 3 кл. М., Новая школа, 1993, 1994.

      5.

      Эрдниев П.М. Взаимно обратные действия в арифметике 2–4 классы М., Просвещение, 1969.

      6.

      Рудницкая В.Н. Тематические и итоговые контрольные работы по математике. М., Дрофа, 1996.

      7.

      Холомкина А.И. Решение задач на движение М., Просвещение, 1982.

      8.

      Уткина Н.Г. Составные задачи в 1 классе М., Просвещение, 1982.

      9.

      Кондратьева Д.Ф. Составные задачи небольшой сложности в 1 классе М., Просвещение, 1982.

      10.

      Гусева Т.В. Обучение решению простых задач в 1 классе М., Просвещение, 1982.

      11.

      Свечников А.А. Решение математических задач в 1 классе М., Просвещение, 1982.

      12.

      Баитова М.А.,
      Бельтюкова Г.В.
      Обучение решению арифметических задач М., Просвещение, 1984.

      13.

      Шамсутдинова Г.С. Преемственность в обучении математике М., Просвещение, 1978.

      14.

      Истомина Н.Б. Активизация учащихся на уроках математики в нач. классах М., Просвещение, 1985.