Формула Кардано


  

Соглашение о комплексных числах

   Действительное число а записывается также в виде a + 0i (или a – 0i).

Примеры. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2.
   Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0+ bi.
  Два комплексных a + bi, a + b'i считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если a = a', b = b'. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство: 2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.
   Замечание. Мы еще не определили, что такое сложение комплексных чисел. Поэтому, строго говоря, мы ещё не в праве утверждать, что число 2 + 5i есть сумма чисел 2 и 5i. Точнее было бы сказать, что у нас есть пара действительных чисел: 2 (абсцисса) и 5 (ордината); эти числа порождают число нового рода, условно обозначаемое 5 + 7i.