Конспект урока "Применение интеграла"

Разделы: Математика


Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

1 ученик: Из истории интегрального исчисления.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

img2.gif (4948 bytes) при .

Математика
  1. Вычисления Sфигур.
  2. Длина дуги кривой.
  3. Vтела на S параллельных сечений.
  4. V тела вращения и т.д.
Физика
  1. Работа А переменной силы.
  2. S – (путь) перемещения.
  3. Вычисление массы.
  4. Вычисление момента инерции линии, круга, цилиндра.
  5. Вычисление координаты центра тяжести.
  6. Количество теплоты и т.д.

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b, f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу, то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис.) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис.). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис.)

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

6 ученик: Вычисление объемов тел.

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе — со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2—9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,29,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F — сила Н; х—абсолютное удлинение пружины, м, вызванное силой F, а k —коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 0,2 = 0,02 (м), b=0,320,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис.). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr2 dх и изменение веса Р на величину * dР = 9807 r2 dх; при этом совершаемая работа А изменится на величину dА=9807пr2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где — плотность жидкости, кг/м3; S — площадь площадки, м2; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис. ) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) — непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b—значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А1, А2 ,..., Аn с массами m1, m2, ..., mn, расположенных на прямой в точках с координатами х1, х2, ..., хn, находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х' равна .

Разобьем отрезок [а; b] на n равных частей точками а= х0 < х1 < х2 < ... <хn= b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна

Считая каждый из n маленьких отрезков материальной точкой массы mk , помещенной в точке , получим по формуле (*), что координата центра масс приближенно находится так

Теперь осталось заметить, что при n —> числитель стремится к интегралу , а знаменатель (выражающий массу всего стержня) - к интегралу

Для нахождения координат центра масс системы материальных точек на плоскости или в пространстве также пользуются формулой(*)

Учитель: У вас на столах таблица и задачи, используя таблицу найдите: а) количество электричества; б) массу стержня по его плотности.

Величины

Вычисление производной

Вычисление интеграла

А – работа;

F – сила;

N - мощность.

F(x)=A' (x);

N(t)=A' (t).

A=;

A=

m –масса тонкого стержня

p – линейная плотность

P(x)=m' (x).

m=

Q –электрический заряд;

I – сила тока.

I(t)=q' (t)

Q=

S –перемещение;

v –скорость.

V(t)=S' (t)

S=

Q –количество теплоты;

с – теплоёмкость.

C(t)=Q' (t)

Q=

Физические приложения интеграла

1. Реши задачи.

Вариант 1

Вариант 2

  1. Вычислите массу участка стержня от , если его линейная плотность задается формулой
  1. Вычислите работу за промежуток времени [4;9 ], если мощность вычисляется по формуле /
  • Вычислите количество электричества, протекшего по проводнику за промежуток времени [ 2;3 ], если сила тока задается формулой
  1. Вычислите работу по переносу единичной массы, совершенную силой [ -1;2].

Итог урока: Завершили тему “Интеграл”, научились вычислять первообразные, интегралы, площади фигур, рассмотрели применение интеграла на практике, данные задачи могут встретиться на ЕГЭ, думаю, с ними вы справитесь.

Сведения из истории интегрального исчисления

Вычисление объёма тел при помощи интеграла

Приложение 9

Приложение 10