Цели урока:
- повторить изученный материал по теме система счисления ;
- научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот;
- освоить принципы перевода чисел из одной системы в другую;
- развивать логическое мышление.
Ход урока
Вначале урока краткое повторение и проверка домашнего задания..
Вопросы:
- В каком виде представлена числовая информация в памяти компьютера?
- Для чего используются системы счисления?
- Какие виды систем счисления вы знаете? Привести свои примеры.
- Чем отличаются позиционные системы от непозиционных?.
Цель нашего урока научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот. Но в начале мы рассмотрим, как можно
представить любое целое неотрицательное чисело:
В позиционных системах значение записи целого числа определяется по следующему правилу: пусть a na n-1a n-2…a 1a 0 — запись числа A, а i – цифры, тогда
A = a n·pn+a n-1·pn-1 +a n-2·pn-2+...+a 1·p1+ a0·p0 (1),
где p — целое число большее 1, которое называется основанием системы счисления
Для того, чтобы при заданном p любое неотрицательное целое число можно было бы записать по формуле (1) и притом единственным образом, числовые значения различных цифр должны быть различными целыми числами, принадлежащими отрезку от 0 до p-1.
Пример:
1) Десятичная система
p = 10
цифры: 0,1,2,3,4,5,6,7,8,9
число 5735 = 5·103+7·102+3·101+8·100
2) Троичная система
p = 3
цифры: 0,1,2
число 2013 = 2·32+0·31+1·30
Замечание: нижним индексом в записи числа обозначается основание системы счисления, в которой записано число. Для десятичной системы счисления индекс можно не писать.
Представление отрицательных и дробных чисел:
Во всех позиционных системах для записи отрицательных чисел так же как и в десятичной системе используется знак ‘–‘. Для отделения целой части числа от дробной используется запятая. Значение записи a na n-1a n-2…a 1a 0, a -1 a -2…a m-2 a m-1a m числа A определяется по формуле, являющейся обобщением формулы (1):
A = an·pn+a n-1·p n-1+a n-2·p n-2+…+a1·p1+a0·p0+a-1·p-1+a -2·p-2+…+am-2·p–(m–2)+am–1·p–(m–1)+amp–m (2),
Пример:
75,6 = 7·101+5·100+6·10–1
–2,3145 = –(2·50+3·5–1+1·5–2+4·5–3)
Перевод чисел из произвольной системы счисления в десятичную:
Следует понимать, что при переводе числа из одной системы счисления в другую количественное значение числа не изменяется, а меняется только форма записи числа, так же как при переводе названия числа, например, с русского языка на английский.
Перевод чисел из произвольной системы счисления в десятичную выполняется непосредственным вычислением по формуле (1) для целых и формуле (2) для дробных чисел.
Перевод чисел из десятичной системы счисления в произвольную.
Перевести число из десятичной системы в систему с основанием p – значит найти коэффициенты в формуле (2). Иногда это легко сделать простым подбором. Например, пусть нужно перевести число 23,5 в восьмеричную систему. Нетрудно заметить, что 23,5 = 16+7+0,5 = 2·8+7+4/8 = 2·81+7·80+4·8–1 =27,48. Понятно, что не всегда ответ столь очевиден. В общем случае применяется способ перевода отдельно целой и дробной частей числа.
Для перевода целых чисел применяется следующий алгоритм (полученный на основании формулы (1)):
1. Найдем частное и остаток от деления числа на p. Остаток будет очередной цифрой ai (j=0,1,2 …) записи числа в новой системе счисления.
2. Если частное равно нулю, то перевод числа закончен, иначе применяем к частному пункт 1.
Замечание 1. Цифры ai в записи числа нумеруются справа налево.
Замечание 2. Если p>10, то необходимо ввести обозначения для цифр с числовыми значениями, большими или равными 10.
Пример:
Перевести число 165 в семеричную систему счисления.
165:7 = 23 (остаток 4) => a0 = 4
23:7 = 3 (остаток 2) => a1 = 2
3:7 = 0 (остаток 3) => a2 = 3
Выпишем результат: a2a1a0, т.е. 3247.
Выполнив проверку по формуле (1), убедимся в правильности перевода:
3247=3·72+2·71+4·70=3·49+2·7+4 = 147+14+4 = 165.
Для перевода дробных частей чисел применяется алгоритм, полученный на основании формулы (2):
1. Умножим дробную часть числа на p.
2. Целая часть результата будет очередной цифрой am (m = –1,–2, –3 …) записи числа в новой системе счисления. Если дробная часть результата равна нулю, то перевод числа закончен, иначе применяем к ней пункт 1.
Замечание 1. Цифры am в записи числа располагаются слева направо в порядке возрастания абсолютного значения m.
Замечание 2. Обычно количество дробных разрядов в новой записи числа ограничивается заранее. Это позволяет выполнить приближенный перевод с заданной точностью. В случае бесконечных дробей такое ограничение обеспечивает конечность алгоритма.
Пример 1:
Перевести число 0,625 в двоичную систему счисления.
0,625·2 = 1,25 (целая часть 1) => a-1 =1
0,25·2 = 0,5 (целая часть 0) => a-2 = 0
0,5·2 = 1,00 (целая часть 1) => a-3 = 1
Итак, 0,62510 = 0,1012
Выполнив проверку по формуле (2), убедимся в правильности перевода:
0,1012=1·2-1+0·2-2+1·2-3=1/2+1/8 = 0,5+0,125 = 0,625.
Пример 2:
Перевести число 0,165 в четверичную систему счисления, ограничившись четырьмя четверичными разрядами.
0,165·4 = 0,66 (целая часть 0) => a-1=0
0,66·4 = 2,64 (целая часть 2) => a-2= 2
0,64·4 = 2,56 (целая часть 2) => a-3= 2
0,56·4 = 2,24 (целая часть 2) => a-4= 2
Итак, 0,16510 ” 0,02224
Выполним обратный перевод, чтобы убедиться, что абсолютная погрешность не превышает 4–4:
0,02224 = 0·4-1+2·4-2+2·4-3+2·4-4= 2/16+2/64+2/256 = 1/8+1/32+1/128 = 21/128 = 0,1640625
|0,1640625–0,165| = 0,00094 < 4–4 = 0,00390625
Перевод чисел из одной произвольной системы в другую
В этом случае сначала следует выполнить перевод числа в десятичную систему, а затем из десятичной в требуемую.
Особым способом выполняется перевод чисел для систем с кратными основаниями.
Пусть p и q – основания двух систем счисления. Будем называть эти системы системами счисления с кратными основаниями, если p = qn или q = pn, где n – натуральное число. Так, например, системы счисления с основаниями 2 и 8 являются системами счисления с кратными основаниями.
Пусть p = qn и требуется перевести число из системы счисления с основанием q в систему счисления с основанием p. Разобьем целую и дробную части записи числа на группы по n последовательно записанных цифр влево и вправо от запятой. Если количество цифр в записи целой части числа не кратно n, то надо дописать слева соответствующее количество нулей. Если количество цифр в записи дробной части числа не кратно n, то нули дописываются справа. Каждая такая группа цифр числа в старой системе счисления будет соответствовать одной цифре числа в новой системе счисления.
Пример:
Переведем 1100001,1112 в четверичную систему счисления.
Дописав нули и выделив пары цифр, получим 01100001,11102.
Теперь выполним перевод отдельно каждой пары цифр, пользуясь пунктом Перевод чисел из одной произвольной системы в другую.
012=110=14
102=210=24
002=010=04
012=110=14
112=310=34
102=210=24
Итак, 1100001,1112 = 01100001,11102 = 1201,324.
Пусть теперь требуется выполнить перевод из системы с большим основанием q, в систему с меньшим основанием p, т.е. q = pn. В этом случае одной цифре числа в старой системе счисления соответствует n цифр числа в новой системе счисления.
Пример: Выполним проверку предыдущего перевода числа.
1201,324 = 1100001,11102=1100001,1112
В шестнадцатеричной системе есть цифры с числовыми значениями 10,11,12, 13,14,15. Для их обозначения используют первые шесть букв латинского алфавита A, B, C, D, E, F.
Приведем таблицу чисел от 0 до 16, записанных в системах счисления с основаниями 10, 2, 8 и 16.
Число в десятичной системе счисления | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
В восьмеричной | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 20 |
В двоичной | 0 | 1 | 10 | 11 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 10000 |
В шестнадцатеричной | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 |
Для записи шестнадцатеричных цифр можно использовать также строчные латинские буквы a-f.
Пример: Переведем число 110101001010101010100,112 в шестнадцатеричную систему счисления.
Воспользуемся кратностью оснований систем счисления (16=24). Сгруппируем цифры по четыре, дописав, слева и справа нужное количество нулей
000110101001010101010100,11002
и, сверяясь с таблицей, получим: 1A9554,C16
Вывод:
В какой системе счисления лучше записывать числа – это вопрос удобства и традиций. С технической точки зрения, в ЭВМ удобно использовать двоичную систему, так как в ней для записи числа используются только две цифры 0 и 1, которые можно представить двумя легко различимыми состояниями “нет сигнала ” и “есть сигнал”.
А человеку, напротив, неудобно иметь дело с двоичными записями чисел из-за того, что они более длинные, чем десятичные и в них много повторяющихся цифр. Поэтому, при необходимости работать с машинными представлениями чисел используют восьмеричную или шестнадцатеричную системы счисления. Основания этих систем – целые степени двойки, и поэтому числа легко переводятся из этих систем в двоичную и обратно.
Записываем задание на дом:
а) Запишите дату рождения всех членов вашей семьи в различных системах счисления.
б) Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:
а) 1001111110111,0112 ;
б) 1110101011,10111012