Цель: Сформировать понятия белок, структуры белка, физические и химические свойства белков.
Ход урока
I. Организационный момент.
II. Актуализация знаний.
(Ученикам заранее предлагается повторить тему “Аминокислоты”).
Два ученика работают у доски.
Задание 1. Напишите формулы 2-аминопропановой кислоты (аланина) и 3-метил-2-аминобутановой кислоты (валина). Какие еще названия этих кислот Вы можете предложить?
Задание 2. Напишите формулу 2-аминоэтановой кислоты. Какие еще названия этой кислоты Вам известны? Составьте дипептид из двух остатков этой кислоты. Укажите место пептидной связи.
Фронтальная беседа.
- Какие две функциональные группы входят в состав аминокислот?
- Чем являются аминокислоты с точки зрения кислотно-основных свойств? За счет каких функциональных групп?
- Дать понятие пептидной связи.
- Могут ли аминокислоты образовывать водородные связи? За счет каких атомов?
- Какие вещества называются полимерами? Приведите примеры известных вам полимеров.
III. Постановка познавательной задачи.
Учащиеся, которые работали около доски, отчитываются о выполненном задании.
Давайте посмотрим на доску, где изображен дипептид, состоящий из остатков одной и той же аминокислоты - глицина. Также на доске вы видите две отдельные формулы аминокислот – аланина и валина.
Скажите, на ваш взгляд, может ли образоваться дипептид из разных по составу аминокислот? Для того, чтобы ответить на этот вопрос, обратите внимание на место пептидной связи в дипептиде.
Глицин
-аминоуксусная кислота
Аланин
-аминопропионовая кислота
Да, так как в образовании пептидной связи принимают участие аминогруппа одной аминокислоты и карбоксильная группа другой аминокислоты, углеводородные радикалы не принимают участия в образовании пептидных связей.
Как вы думаете, возможно ли дальнейшее присоединение аминокислот к этому веществу? Ответ обоснуйте.
Да, возможно присоединение, так как у молекулы дипептида имеются свободные карбоксильная группа (С – конец) и аминогруппа (N - конец). Цепь может расти с двух сторон.
Ала-гли
Сколько вариантов соединения вы можете предложить?
Два. Когда аминокислота глицин стоит на первом месте и когда аминокислота глицин стоит на втором месте?
Ала-гли
Гли-ала
В клетках и тканях живых организмов обнаружено свыше 170 различных аминокислот, и из них 20 альфа-аминокислот входят в состав важнейших биологических веществ, называемых белками.
Итак, тема нашего урока “Белки. Строение и свойства”.
Давайте попробуем дать определение белков.
Белки - это биологические полимеры, состоящие из альфа-аминокислот.
Очень хорошо. Запишите это определение в свои рабочие листки.
Примечание: Обычно, учащиеся дают неполное определение белков.
Белки это биологические полимеры, состоящие из аминокислот.
Поэтому им предлагается следующее задание:
Перед нами две полипептидные цепочки. Какой из пептидов, на ваш взгляд, может являться белком и почему?
Первая. Потому что образована альфа-аминокислотами.
Верно. Данная полипептидная цепочка представляет собой первичную структуру белка. Итак, за счет каких связей возникает первичная структура белка?
Первичная структура возникает за счет пептидных связей.
Верно. Давайте запишем это в таблицу.
Но белок гораздо более сложная система, чем полипептидная цепочка. Помимо первичной структуры белка необходимо рассматривать вторичную, третичную, а в некоторых случаях и четвертичную структуры.
В образовании вторичной структуры белка огромную роль играют водородные связи. В начале урока мы вспомнили с вами о том, какие атомы могут участвовать в образовании этого вида связи.
Водород и кислород, азот.
Существуют два типа вторичной структуры
(-спираль и -структура), но в
основе каждого из них лежат водородные связи.
-спираль
Заполним рабочие листки.
Третичная структура белка – это способ расположения -спирали и -слоя в пространстве. Осуществляется за счет нескольких типов связей, а именно:
- Ковалентные связи между атомами серы различных аминокислот (дисульфидные мостики S – S).
- Гидрофильно-гидрофобные взаимодействия
Гидро – вода
Филос – любовь
Фобос – ненависть
Третичная структура белка.
Заполним рабочие листки.
Некоторые белки образуют четвертичную структуру, осуществляемую за счет все тех же водородных связей и сил электростатического притяжения.
Четвертичная структура белка гемоглобина.
Заполним рабочие листки.
Следует отметить, что белки “работают” правильно только в третичной или четвертичной структурах (если таковая имеется).
Мы рассмотрели строение и теперь переходим к свойствам белков. Ведь, как известно, свойства веществ основываются на их строении. Сначала рассмотрим физические свойства белков.
- Белки – высокомолекулярные соединения, т.е. это вещества с высокой молекулярной массой от 5 тыс. до миллионов а.е.м. (6500 - инсулин; 32 млн. - белок вируса гриппа).
- Растворимость белков в воде зависит от их функций. Молекулы фибриллярных белков вытянуты в длину, нитеобразны и склонны группироваться одна возле другой с образованием волокон. Это основной строительный материал для тканей: сухожилий, мускульных и покровных. Такие белки в воде не растворимы. Прочность белковых молекул просто поразительна! Человеческий волос прочнее меди и может соперничать со специальными видами стали. Пучок волос площадью 1 см2 выдерживает вес в 5 тонн, а на женской косе в 200 тыс. волосинок можно поднять груженый КамАз весом 20 тонн.
Глобулярные белки свернуты в клубочки. В организме они выполняют ряд биологических функций, требующих их подвижности, т.е. растворимости. Поэтому глобулярные белки растворимы в воде либо в растворах солей, кислот или оснований. Из-за большого размера молекул образуются растворы, называемые коллоидными.
Демонстрация растворения альбумина в воде.
Теперь переходим к химическим свойствам белков. И опять мы здесь увидим не совсем обычные химические реакции, так как белки являются полимерными молекулами. Посмотрите в свои рабочие карточки и ответьте на следующие вопросы:
- Какие связи, по Вашему мнению, являются наиболее прочными: пептидные или водородные?
- Какие структуры белков будут разрушаться быстрее и легче?
Пептидные, т. к. эта связь относится к ковалентной химической связи.
Четвертичная (если таковая имеется), третичная и вторичная. Первичная структура будет сохраняться дольше других, т.к. она образована более прочными связями.
Денатурация – это разрушение белка до первичной структуры (пептидные связи сохраняются).
Демонстрация опыта. В 5 небольших пробирок налить по 4 мл раствора альбумина. Первую пробирку нагреть в течении 6 – 10 с (до помутнения). Во вторую пробирку добавить 2 мл 3М HCl. В третью - 2 мл 3М NaOH. В четвертую – 5 капель 0,1 М AgNO3. В пятую – 5 капедь 0.1 М NaNO3.
После проведения опыта на рабочих листках учащиеся заполняют пробелы в следующей фразе:
Денатурация – это разрушение белка до структуры под действием , а также под действием растворов различных химических веществ ( , , солей) и радиации.
Будут ли белки после денатурации проявлять свои специфические свойства?
Большинство белков при денатурации утрачивают биологическую активность, т.к. белки проявляют свои специфические свойства только в высших структурах, т.е. третичной и четвертичной.
Как вы полагаете, можно ли разрушить первичную структуру белка?
Наверное, можно.
Это происходит в вашем организме каждый раз, когда в него поступает белковая пища! Сейчас мы будем рассматривать одно из самых важных свойств белков, а именно – гидролиз.
Гидролиз белка. При гидролизе белка происходит разрушение первичной структуры.
Какие вещества будут образовываться при гидролизе?
-аминокислоты.
Давайте попытаемся доказать это при помощи опыта.
Демонстрация опыта, заложенного перед уроком. В две пробирки наливают по 2 мл раствора куриного белка, в одну из них добавляют 1 мл раствора насыщенного раствора фестала (таблетку предварительно освобождают от гладкой оболочки). Фестал представляет собой ферментативный препарат, облегчающий пищеварение. В его состав входят ферменты липаза (расщепляет жиры), амилаза (расщепляет углеводы), протеаза (гидролизует белки). Обе пробирки помещают в водяную баню при температуре человеческого тела 37 – 40oС . В течение 30 минут продолжается процесс “переваривания” белка. По окончанию нагревания в обе пробирки добавляют по 2 мл насыщенного раствора сульфата аммония или любого другоо реагента, вызывающего денатурацию белка. В первой (контрольной) пробирке образуется обильный белый осадок (Почему? - Белок денатурирует). Во второй таких явлений не наблюдается (Почему? - Белок гидролизовался, а аминокислоты и пептиды с небольшой молекулярной массой не свертываются).
На основе продемонстрированного опыта закончите фразу, записанную на рабочих листках.
Гидролиз – это разрушение структуры белка под действием , а так же водных растворов кислот или щелочей.
Подумайте, какое значение для нашего организма имеет гидролиз белков и где он происходит?
Получение аминокислот для нужд организма в результате процессов пищеварения, начинается в желудке, заканчивается в двенадцатиперстной кишке.
Цветные реакции белков – качественные реакции на белки.
а) Биуретовая реакция (Демонстрация опыта).
б) Ксантопротеиновая реакция (Демонстрация опыта).
Заполняем рабочие листки (обратить внимание на условия протекания этих реакций и их важность для проведения опытов на следующем уроке.)
IV. Закрепление
Химические свойства.
- Денатурация – это разрушение белка до _____________структуры под действием________________, а также под действием растворов различных химических веществ (______,________, солей) и радиации.
- Гидролиз – это разрушение _____________структуры белка под действием________________, а так же водных растворов кислот или щелочей.
- Качественные реакции.
Биуретовая.
Белок + ___________________________ = _________________________
Ксантопротеиновая.
Белок + ___________________________ = __________________________