Вводный урок геометрии в 7-м классе с использованием средств мультимедиа "Краткая история возникновения и развития геометрии. Начальные геометрические сведения"

Разделы: Математика, Информатика


Тип: комбинированный, с применением компьютерных технологий.

Цели и задачи.

Образовательные – познакомить учащихся с историей возникновения геометрии, с первыми основными геометрическими понятиями: точка и прямая, «лежать между» («лежать на») для точек прямой, с их условными обозначениями; с простейшими геометрическими фигурами на плоскости.

Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке с помощью решения задач исследовательского характера, интеллектуальные качества личности школьников такие, как самостоятельность, способность к оценочным действиям, обобщению, быстрому переключению; способствовать формированию навыков самостоятельной работы; формировать умение четко и ясно излагать свои мысли.

Воспитательные – прививать учащимся интерес к предмету с помощью изучения истории и развития науки, применения информационных технологий (с использованием компьютера); формировать умение аккуратно и грамотно выполнять математические записи.

План урока:

  1. Вводное слово учителя с показом слайдов.
  2. Рассказ учителя об истории развития геометрии с показом слайдов.
  3. Выделение основных понятий планиметрии.
  4. Повторение ранее изученного геометрического материала, математических символов и выполнение учащимися задания на взаимное расположение точек и прямых на плоскости.
  5. Самостоятельная работа в виде тестирования с последующей самопроверкой (слайды с ответами и критерием оценивания).
  6. Проверка усвоения изученного материала в форме кроссворда.
  7. Подведение итогов урока. Выставление оценок. Домашнее задание.

Ход урока

1. Вводное слово. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия».

Эти слова очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека. Лучше ориентироваться в нем, открывать новое, понимать красоту и мудрость окружающего мира поможет вам предмет – геометрия, который мы начинаем изучать с этого урока.

Внимательно прочитайте тему урока, вдумайтесь в ее формулировку, сформулируйте вопросы, на которые мы должны, на ваш взгляд, найти ответы в ходе урока.

Учащиеся называют вопросы, а учитель обещает, что на все вопросы мы все сообща постараемся найти ответы на этом уроке.

Вопросы:

Что означает слово «геометрия»?

Когда, как и с какой целью зародилась наука – геометрия?

Кого можно считать основоположниками геометрии? Как называлось первое дошедшее до нас научное изложение геометрии?

Какие можно выделить этапы развития геометрии?

Что изучает геометрия?

Как можно объяснить, что такое точка, прямая, отрезок?

Различные математические объекты определили направления в математике.

img1.jpg (47566 bytes)

С геометрическими понятиями вы уже знакомы с самого детства: круг, квадрат, угол, куб, измерение отрезков, площадь, объем, и т.д.

При изучении фигур в геометрии не берется во внимание, из какого материала они сделаны, какого цвета, в каком состоянии находятся (твердое, жидкое, газообразное).

Этим занимается физика, химия, биология. Изучая геометрию, нас будут интересовать формы и размеры предметов.

Шкаф, спичечный коробок, кирпич, многоэтажный дом – прямоугольный параллелепипед.

Футбольный мяч, резиновый мяч, мыльный пузырь – шар.

Блин, солнце, луна, озеро – круг.

Красный кубик, синий кубик, зеленый кубик – куб.

Таким образом, геометрическая фигура (тело) – это абстрактный предмет, в котором рассматривается только форма и размер, не обращая внимания на физические свойства.

Расположением геометрических фигур занимаются различные разделы геометрии.

Слайд 1

Слайд 2

img2.jpg (44879 bytes)

Геометрические фигуры, точки которых лежат в одной плоскости, изучает планиметрия.

Геометрические фигуры, точки которых не лежат в одной плоскости, изучает стереометрия.

Мы начнем изучать геометрию с плоских фигур.

Но прежде заглянем в историю возникновения геометрии.

2. История возникновения геометрии.

Великий немецкий математик Вильгельм Лейбниц сказал: «Кто хочет ограничиться настоящим, без знания прошлого, тот никогда его не поймет».

Заглянем в прошлое, когда зародилась наука геометрия....

Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, которые имеют форму шара. А добывая каменную соль, люди наталкивались на кристаллы, имевшие форму куба. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими формами.

Уже 200 тысяч лет тому назад были изготовлены орудия сравнительно правильной геометрической формы, а потом люди научились шлифовать их. Специальных названий для геометрических фигур, конечно, не было. Говорили: «такой же, как кокосовый орех» или «такой же, как соль» и т.д.

Слайд 3

А когда люди стали строить дома из дерева, пришлось глубже разобраться в том, какую форму следует придавать стенам и крыше, какой формы должны быть бревна. Сами того не зная, люди все время занимались геометрией: женщины, изготавливая одежду, охотники, изготавливая наконечники для копий или бумеранги сложной формы, рыболовы, делая такие крючки из кости, чтобы рыба с них не срывалась.

Когда стали строить здания из камня, пришлось перетаскивать тяжелые каменные глыбы. Для этого применялись катки. И заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки.

Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки и с их помощью перетаскивать грузы. Так появилось первое колесо.

Но не только в процессе работы знакомились люди с геометрическим фигурами.

Слайд 4

Издавна они любили украшать себя, свою одежду, свое жилище (бусинки, браслеты, кольца, украшения из драгоценных камней и металлов, роспись дворцов).

Для того, чтобы взимать налоги с земли, необходимо было знать их площадь. Гончару необходимо было знать, какую форму следует придать сосуду, чтобы в него входило то или иное количество жидкости. Астрономы, наблюдавшие за небом и дававшие на основе этих наблюдений указания, когда начинать полевые работы, должны были научиться определять положение звезд на небе. Для этого понадобилось измерять углы.

Так практическая деятельность людей привела к дальнейшему углублению знаний о формах фигур, развитию геометрии. Люди стали учиться измерять и площади, и объемы, и длины и т.д.

Древние египтяне были замечательными инженерами. До сих пор не могут до конца разгадать загадки огромных гробниц Египетских царей – Фараонов.

Слайд 5

Пирамиды – а они построены более 5 тыс. лет назад – состоят из каменных блоков весом 15 тонн, и эти «кирпичики» так подогнаны друг к другу, что не возможно между ними протиснуть и почтовую открытку. А при строительстве использовали лишь простейшие механизмы – рычаги и катки.

«Все боится времени, но само время боится пирамид».

В Вавилоне при раскопках ученые обнаружили остатки каменных стен, высотой в несколько десятков метров, а высота Вавилонской башни достигает 82 метра.

Слайд 6

Без математических знаний все эти сооружения невозможно было бы построить. И все же математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой, поэтому правила надо было зазубривать, не понимая, почему надо применять то, а не другое.

Слайд 7

Почти все великие ученые древности и средних веков были выдающимися геометрами. Девиз древней школы был: "Не знающие геометрии не допускаются!"

Слайд 8

Слайд 9 (Пифагор VI век до н.э., основал свою школу)

Настает время привести все разрозненные знания в систему.

И наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах «Начала». Произведение состояло из 13 томов, описанная в этих книгах геометрия получила название Евклидова.

Слайд 10

Конечно, геометрия не может быть создана одним ученым. В работе Евклид опирался на труды десятков предшественников и дополнил работу своими открытиями и изысканиями. Сотни раз книги были переписаны от руки, а когда изобрели книгопечатание, то она много раз переиздавалась на языках всех народов и стала одной из самых распространенных книг в мире.

Слайд 11

В одной легенде говорится, что однажды египетский царь Птолемей I спросил древнегреческого математика, нет ли более короткого пути для понимания геометрии, чем тот, который описан в его знаменитом труде, содержащемся в 13 книгах.

Ученый гордо ответил: " В геометрии нет царской дороги".

В течение многих веков «Начала» были единственной учебной книгой, по которым молодежь изучала геометрию. Были и другие. Но лучшими признавались «Начала» Евклида. И даже сейчас, в наше время, учебники написаны под большим влиянием «Начал» Евклида.

Несмотря на то, что содержание геометрии расширилось далеко за пределы учения о земле, она по-прежнему продолжает называться «Геометрией».

3. Основные понятия планиметрии

Конечно, геометрия дает не только представление о фигурах, их свойствах, взаимном расположении, но и учит рассуждать, ставить вопросы, анализировать, делать выводы, то есть логически мыслить.

Мы начинаем изучать планиметрию.

Как вы думаете, какие самые основные понятия планиметрии?

Даже самое большое здание складывается из маленьких кирпичей, так и сложные геометрические фигуры составляются из простейших фигур.

Конечно, самая главная - это точка.

Слайд 12

Почти все названия геометрических фигур греческого происхождения, как и само слово геометрия. Однако эти слова вошли в русский язык не непосредственно с греческого, а через латинский язык.

Точка – результат мгновенного касания, укол

Отсюда же произошел медицинский термин пункция-прокол.

Пунктир.

Линия – льняная нить.

Линолеум – первоначально означал промасленное льняное полотно.

Как уже было сказано ранее, все названия геометрических фигур первоначально были названиями конкретных предметов, имеющих форму, более или менее близкую к форме данной фигуры.

4. Повторение известного материала о точках и прямых и их расположении относительно друг друга.

Давайте вспомним, как обозначают на чертеже прямые и точки.

- Прямая безгранична, поэтому на чертеже изображают часть.

- Прямые обозначают двумя заглавными латинскими буквами, соответствующим двум точкам на прямой или одной малой буквой.

- Точки обозначают заглавными латинскими буквами.

- Знак img3.jpg (13410 bytes) означает принадлежание, т.е. А1 img3.jpg (13410 bytes)m означает, что точка А1 принадлежит прямой m или лежит на ней. И А2img4.jpg (13550 bytes)m соответственно, не принадлежит или не лежит.

Выполнить задание

Слайд 13

Опишите этот рисунок. Запишите рассказ, используя условные обозначения.

img5.jpg (19858 bytes)

5. Самостоятельная работа.

В форме теста.

Самопроверка теста, выставление оценок.

Слайд 14 (ответы)

Слайд 15 (Критерий оценивания)

6. Проверка усвоения изученного материала.

Учитель выдает кроссворд каждому ученику.

Кроссворд

img6.jpg (71964 bytes)

Слайд 16

  1. Вставь пропущенное слово: «Через любые две точки можно провести ... ; и при том только одну».
  2. Математический знак img3.jpg (723 bytes)
  3. Название книги, в которой впервые был систематизирован геометрический материал.
  4. Геометрическая фигура на плоскости.
  5. Геометрическая фигура в пространстве.
  6. Раздел геометрии.
  7. Математический знак img7.jpg (13479 bytes)
  8. Первоначальное понятие в геометрии.
  9. Часть прямой, ограниченная двумя точками.
  10. Древнегреческий математик.
  11. Геометрическая фигура на плоскости.

Если кроссворд учащиеся не успевают выполнить весь, то он выдается на дом для доработки, и следующий урок начинается с опрашивания по вопросам кроссворда. Или: тот, кто успел ответить на все вопросы кроссворда вовремя, считается полностью усвоившим урок.

Итак, что же получилось в выделенной части?

Слайд 17

Что такое планиметрия?

7. Подведение итогов урока.

На все ли вопросы вы получили сегодня ответы? (Учитель обращает внимание учащихся на вопросы, поставленные в начале урока, и просит кратко еще раз на них ответить.)

Выставление оценок за тест.

Домашнее задание: стр. 3-6, № 1,2 на стр.7

Использованная литература:

  1. Атанасян Л.С. и др. Геометрия 7-9.  М.: Просвещение, 1991.
  2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 класса.  М.: Просвещение, 1989.
  3. Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия. Учебное пособие для 5-6 классов.   Смоленск: Русич, 1995.
  4. Геометрия 7 класс. Поурочные планы по учебнику Атанасяна Л.С. и др. «Геометрия. 7-9 классы»./Авторы-составители Афанасьева Т.С., Тапилина Л.А. – Волгоград: Учитель, 2002.
  5. Энциклопедия для детей. Том 11. Математика. – М.: Аванта +, 1999.
  6. Чупин В.Д. От Пифагора до наших дней.  Пермь, 1992
  7. Методические рекомендации по курсу «История математики» ПГПУ. Пермь, 2004.
  8. Мищенко Т.М. Геометрия. Рабочая тетрадь для 7 класса. М.: ИД Генжер, 1998.

Презентация к уроку