Повторение изученного материала.
Что такое оптика?
Что такое геометрическая оптика?
Приведите примеры естественных и искусственных источников света.
Что такое луч?
Закон прямолинейного распространения света.
Что такое тень?
Что такое полутень?
Закон отражения света.
Изучение нового материала.
Развитие оптики и технический прогресс. Создание оптических приборов.
Жизнь на Земле возникла и существует благодаря солнечному свету. Благодаря нему мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете. Свет, усиленный оптическими приборами, открывает человеку два полярных по масштабам мира: космический мир с его огромными протяженностями и микроскопический, населенный неразличимыми простым глазом мельчайшими организмами.
Основы оптики были заложены еще в глубокой древности. Варка прозрачного стекла была известна древним египтянам и жителям Мессопотамии за 1600 лет до нашей эры, а в древнем Риме из стекла с высоким совершенством изготовляли посуду и украшения. В XIII веке человечество получило первые оптические приборы - очки и увеличительные стекла. Значительно позднее, в начале XVII века, были изобретены зрительная труба и микроскоп.
В 1609 году итальянский ученый Галилей изобрел подзорную трубу с отрицательной линзой в качестве окуляра и широко использовал ее для наблюдений. В России очки и зрительные трубы появились в начале XVII веке.
Создание теории оптических приборов началось в конце XVII века благодаря трудам выдающихся ученых: Р. Декарта, П. Ферма, И. Ньютона, К. Гаусса и других. Большой вклад в развитие мировой науки и техники в области оптики внесли русские ученые М. В. Ломоносов, Л. Эйлер, В. Н. Чиколев, механики И. П. Кулибин, О. Н. Малофеев.
В России при Петре 1 оптика получила свое дальнейшее развитие. В 1725 году при Академии Наук была организована кафедра оптики и оптическая мастерская. Одним из руководителей кафедры оптики был Л. Эйлер, который написал книгу “Диоптрика”, где изложил основы геометрической оптики.
М. В. Ломоносов был первым русским ученым, который применил микроскоп для научных исследований, он создал целый ряд принципиально новых оптических приборов, разработал способы изготовления цветного стекла, цветной мозаики. Трудами выдающихся русских М.В.Ломоносова и Л.Эйлера в XVIII веке были заложены главнейшие основы для развития оптического производства в России. После революции 1917 года в Петрограде в 1918 году был организован Государственный Оптический Институт, его возглавил академик Д.С.Рождественский. ГОИ явился центром, определяющим научную политику в области создания отечественной оптическо-механической промышленности. В ГОИ работали выдающиеся ученые: С.И.Вавилов, А.А.Лебедев, И.В.Гребенщиков, Н.Качалов и другие.
В послевоенные годы наша оптическая промышленность с успехом осваивала производство уникальных высокоточных приборов, электронных микроскопов, интерферометров, приборов для космических исследований.
На базе явлений фотоэлектрического эффекта, открытого русским ученым А.Г.Столетовым, успешно развивается фотоэлектрическая область оптики, нашедшая применение в автоматике, телевидении, управлении космическими кораблями.
К числу крупных достижений отечественной оптики относятся работы профессора М.М.Русинова. Созданные им широкоугольные аэрофотообъективы выдвинули советскую аэрофотсъемку на ведущее место в мире.
Создание аппаратуры для фотографирования невидимой с Земли обратной стороны Луны явилось началом развития нового направления оптического приборостроения – космически оптических приборов.
Исследования советских физиков Н.Г.Басова и А.М.Прохорова в середине 50-х года XX века стали тем зерном, из которого выросла новая область науки – квантовая электроника. В 1971 году Денис Габор получил Нобелевскую премию за открытие голографии.
Еще в 1930 году в Германии Ламм передал по оптическим волокнам не только свет, но и изображение. Но технология изготовления стеклянных волокон была очень сложной, поэтому идеи Ламма на долгие годы остались забытыми.
Современная наука подняла на гребень волны волоконную оптику.
История развития взглядов на природу света
Первые представления о природе света были заложены в глубокой древности. Греческий философ Платон (427–327 гг до н.э.) создал одну из первых теорий света.
Евклид и Аристотель (300–250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Аристотель впервые объяснил сущность зрения.
Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века.
В XVII веке датский астроном Ремер (1644–1710) измерил скорость распространения света, итальянский физик Гримальди (1618–1663) открыл явление дифракции, гениальный английский ученый И.Ньютон (1642–1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции, Э.Бартолин (1625–1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики. Гюйгенс (1629–1695) положил начало волновой теории света.
В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений. Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц – корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно.
С точки зрения волновой теории света, основоположником которой является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде – эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.
Электромагнитная теория света была создана в середине XIX века Максвеллом (1831–1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн.
Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.
Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света.
Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний – электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие.
Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Согласно этой теории, световое излучение испускается и поглощается частицами вещества не непрерывно, а дискретно, то есть отдельными порциями – квантами света.
Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.
В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться. Современная теория света подтверждает его двойственную природу: волновую и корпускулярную.
Скорость света
Одна из характерных черт физика – количественный характер ее законов. Во многие соотношения, выражающие законы физики входят некоторые постоянные – так называемые физические константы. Это, например, гравитационная постоянная в законе всемирного тяготения, удельная теплоемкость в уравнении теплового баланса, скорость света в законе Эйнштейна, связывающем массу тела и его полную энергию. Многие физические постоянные названы так весьма условно. Действительно, нагревается вместо воды спирт и в соответствующих уравнениях приходится использовать иную величину теплоемкости. Такими “относительными” постоянными являются коэффициент трения, удельное сопротивление, плотность и т.д. Но есть и константы, которые не меняют своего значения. Гравитационная постоянная не зависит от того, взаимодействуют ли тела из свинца или из стали. Электроны в меди и золоте имеют одинаковый заряд. Так же универсальна и постоянная с – скорость света в вакууме.
Именно вследствие своей универсальности, такие константы названы мировыми или фундаментальными постоянными. Величины фундаментальных постоянных определяют важнейшие особенности всего физического мира – от элементарных частиц до крупнейших астрономических объектов.
Принадлежность скорости света к весьма небольшой группе мировых постоянных объясняет интерес к этой величине. Однако надо признать, что даже в этой группе она занимает выдающееся место. Скорость света связана с физическими законами, относящимися к самым, казалось бы, далеким разделам физики. Постоянная с входит в преобразования Лоренца в специальной теории относительности, она связывает электрическую и магнитную постоянные. Формула Эйнштейна Е=mc2 позволяет рассчитать количество энергии, выделяющейся при ядерных превращениях. И везде мы сталкиваемся со скоростью света.
Такая распространенность константы с служит для современной физики ярким проявлением единства физического мира и правильности пути, по которому развивается наука о природе.
Понимание этого единства прошло не сразу. Со времени первого определения значения скорости света прошло более 300 лет. Постепенно константа с раскрывала перед учеными свои тайны. Иногда за измерениями этой величины стояли годы целенаправленных поисков, работы по усовершенствованию методов измерения и научных приборов. Иногда скорость света возникала в экспериментах возникала неожиданно, ставя перед учеными вопросы, касавшиеся самых глубин физической науки. Измерение константы опровергали и подтверждали физические теории и способствовали прогрессу техники.
Существуют прямые и косвенные методы измерения скорости света. К прямым методам относятся опыты О.Ремера, А.Физо, Л.Фуко, А.Майкельсона. К косвенным методам относятся опыты Д.Брадлея, Ф.Кольрауша, В.Вебера.
Прямой способ основан на измерении пути, пройденного светом и времени прохождения этого пути c=l/t . В 1676 году Ремер наблюдал за затмением спутника Юпитера – Ио. Спутник проходил пeред планетой, а затем погружался в ее тень и пропадал из поля зрения. Через 42 часа 28 минут Ио появлялся опять. Ремер проводил измерения, когда Земля ближе всего подходила к Юпитеру. Когда через несколько месяцев он повторил наблюдения, то оказалось, что спутник появился из тени на 22 минуты позже. Ученый объяснил, 22 минуты свет затрачивает на прохождение из предыдущей точки наблюдения до нынешней точки. Зная время запаздывания и расстояние, которым оно вызвано, можно определить скорость света. Вследствие неточности измерений и неточного значения радиуса Земли Ремер получил значение скорости света равное 215000 километров в секунду.
В лабораторных условиях скорость света впервые удалось измерять в 1849 году французскому физику Физо. В его опыте свет от источника, пройдя через линзу, падал на полупрозрачную стеклянную пластинку. Отразившись от пластинки узкий пучок направлялся на периферию быстро вращающегося колеса. Пройдя между зубцами свет достигал зеркала, находившегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет проходил между зубцами колеса и затем попадал в глаз наблюдателя. Когда скорость вращения была маленькой, свет отраженный от зеркала был виден, при увеличении скорости вращения он исчезал. При дальнейшем увеличении скорости вращения, свет опять становился виден. То есть, за время распространения света до зеркала и обратно колесо успевало повернуться на столько, что на место прежней прорези вставала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом можно определить скорость света. В опыте Физо расстояние равнялось 8,6 километров, а скорость света получилась равной 313000 километров в секунду.
В основе косвенного способа измерения скорости света лежит представление о свете как об электромагнитной волне и ее скорость находится путем умножения длины волны на частоту колебаний волны.
Развивая теорию электродинамики Ампера, в 1846 году Вебер и Кальрауш получили значение скорости света 310000 километров в секунду, но полученный результат объяснить они не могли, так как не существовало ясного понимания механизма передачи взаимодействия электрических зарядов. Формально теория дальнодействующих электромагнитных сил Вебера не сталкивалась со сколь-нибудь серьезной оппозицией, но уже зрели идеи близкодействия, важнейшим следствием которых является конечность скорости распространения взаимодействий.
Современная физика решительно утверждает, что история скорости света на закончена. Свидетельством тому служат работы по измерению скорости света, выполненные в последние годы.
Резкое повышение точности измерения скорости электромагнитных волн произошло после Второй мировой войны. Исследования, проведенные в военных целях, кроме угрозы существованию человечеству принесли множество важнейших, чисто научных результатов. Один из них – развитие техники сверхвысоких частот. Были созданы генераторы и приемники излучения, работающие в диапазоне длин волн от 1 метра до нескольких миллиметров. В СВЧ-диапазоне волн удалось провести очень точные и, что самое важное, независимые измерения частоты излучения и его длины волны. Такой метод определения скорости света очень удобен, так как длины волн порядка одного сантиметра можно определить с очень высокой точностью.
Конечно, не следует думать, что измерить величину с , используя новую технику, было очень просто. Каждый ученый, работавший в этой области, ставил перед собой задачу-максимум: провести предельно точные измерения длины волны и частоты для получения возможно более точного значения скорости света, а работа на пределе точности всегда сложна.
Определенным итогом измерения скорости света в СВЧ-диапазоне стала работа американского ученого К.Фрума, результаты которой были опубликованы в 1958 году. Ученый получил результат 299792,50 километров в секунду. В течение длительного периода эта величина считалась наиболее точной.
Для того, чтобы повысить точность определения скорости света требовалось создание принципиально новых методов, которые позволили бы проводить измерения в области больших частот и соответственно, меньших длин волн. Возможность разработки таких методов появилась после создания оптических квантовых генераторов – лазеров. Точность определения скорости света возросла по отношению к опытам Фрума практически в 100 раз. Способ определения частот с помощью использования лазерного излучения дает величину скорости света, равную 299792,462 километра в секунду.
Физики продолжают исследовать вопрос о постоянстве скорости света во времени. Исследования скорости света могут дать еще много нового для познания природы, неисчерпаемой в своем разнообразии. 300-летняя история фундаментальной постоянной с отчетливо демонстрируют ее связи с важнейшими проблемами физики.
Решение задач
1. Из древнегреческой легенды о Персее:
“Не далее полета стрелы было чудовище, когда Персей взлетел высоко в воздух. Тень его упала в море, и с яростью ринулось чудовище на тень героя. Персей смело бросился с высоты на чудовище и глубоко вонзил ему в спину изогнутый меч…”
Вопрос: что такое тень и благодаря какому физическому явлению она образуется? Нарисуйте ход лучей.
2. Из африканской сказки “Выборы вождя”:
“Собратья, – молвил Аист, степенно выйдя в середину круга. – Мы спорим с самого утра. Смотрите, наши тени уже укоротились и скоро совсем исчезнут, ибо близится полдень. Так давайте еще до того, как солнце минует зенит, придем к какому-то решению…”
Вопрос: почему длины теней, которые отбрасывали люди стали укорачиваться? Ответ поясните рисунком. Есть ли на Земле такое место, где изменение длины тени минимально?
3. Из итальянской сказки “Человек, который искал бессмертие”:
“И тут Грантэста увидел что-то, что показалось ему страшнее бури. К долине приближалось чудовище, летевшее быстрее, чем луч света. У него были кожистые крылья, бородавчатый мягкий живот и огромная пасть с торчащими зубами…”
Вопрос: что неверно с точки зрения физики в этом отрывке?
4. Из древнегреческой легенды о Персее:
“Скорей отвернулся Персей от горгон. Боится увидеть он их грозные лица: ведь один взгляд и в камень обратится он. Взял Персей щит Афины-Паллады – как в зеркале отразились в нем горгоны. Которая же из них Медуза?
Как падает с неба орел на намеченную жертву, так ринулся Персей к спящей Медузе. Он глядит в ясный щит, чтоб верней нанести удар…”
Вопрос: какое физическое явление использовал Персей, чтобы обезглавить Медузу? Нарисуйте возможный ход лучей.
Домашнее задание
Введение, п. 40 (Г.Я. Мякишев, Б.Б.Буховцев “Физика. 11”)