Сумма углов треугольника

Разделы: Математика


Цели и задачи:

Образовательные:

  • повторить и обобщить знания о треугольнике;
  • доказать теорему о сумме углов треугольника;
  • практически убедиться в правильности формулировки теоремы;
  • научиться применять полученные знания при решении задач.

Развивающие:

  • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

Воспитательные:

  • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

Тип урока: изучение нового материала.

Ход урока

I. Организационный момент

Приветствие. Психологический настрой учащихся на работу.

II. Разминка

С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:


Рисунок 1

III. Формулируем задачу урока

Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

Ученики формулируют задачу урока - найти сумму углов треугольника.

IV. Объяснение нового материала

Практическая часть (способствует актуализации знаний и навыков самопознания). Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

а)
Рисунок 2

б)
Рисунок 3

в)
Рисунок 4

г)
Рисунок 5

д)
Рисунок 6

После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

Ученики: Сумма углов треугольника равна 180 градусов.

Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


Рисунок 7   

 
Рисунок 8

Чертежи высвечиваются на экране через проектор.

Учитель предлагает с помощью чертежей доказать теорему.

Затем доказательство проводится с применением УМК «Живая математика». Учитель на компьютере проецирует доказательство теоремы.

Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


Рисунок 9

Доказательство:

а)
Рисунок 10

  б)
Рисунок 11

в)
Рисунок 12

Учащиеся в тетради делает краткую запись доказательства теоремы:

Теорема: Сумма углов треугольника равна 180°.


Рисунок 13
 

Дано: Δ АВС

Доказать: А +  В +  С = 180°.

Доказательство:

      1. Проведем через вершину В прямую ВD, параллельную АС;
      2.  1 =  4 как накрест лежащие, так как ВD ‌‌‌‌‌‌|| АС и АВ – секущая;
      3.  3 =  5 как накрест лежащие, так как ВD ‌‌‌‌‌‌|| АС и ВС – секущая;
      4.  4,  2 и  5 составляют развернутый угол;
      5.  4 +  2 +  5 = 180°, так как градусная мера развернутого угла равна 180°.
      6.  1+  2 +  3 = 180° или А +  В +  С = 180°.

Что требовалось доказать.

V. Физ. минутка.

VI. Объяснение нового материала (продолжение)

Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой.

Если в треугольнике все углы острые, то он называется остроугольным.

Если один из углов треугольника тупой, то он называется тупоугольным.

Если один из углов треугольника прямой, то он называется прямоугольным.

Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

Таблица 1

Вид треугольника Равнобедренный Равносторонний Разносторонний
Прямоугольный  
Тупоугольный  
Остроугольный

 

VII. Закрепление изученного материала.

  1. Решить задачи устно:

(Чертежи высвечиваются на экране через проектор)

Задача 1. Найдите угол С.


Рисунок 14

Задача 2. Найдите угол F.


Рисунок 15

Задача 3. Найдите углы К и N.


Рисунок 16

Задача 4. Найдите углы P и T.


Рисунок 17

  1. Решить задачу самостоятельно № 223 (б, г).
  2. Решить задачу на доске и в тетрадях уч-ся №224.
  3. Вопросы: Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол.
  4. (выполняется устно) На карточках, имеющихся на каждом столе, изображены различные треугольники. Определите на глаз вид каждого треугольника.


Рисунок 18

  1. Найдите сумму углов 1, 2 и 3.


Рисунок 19

VIII. Итог урока.

Учитель: Что мы узнали? Для любого ли треугольника применима теорема?

IX. Рефлексия.

Передайте мне свое настроение, ребята! С обратной стороны треугольника изобразите свою мимику.


Рисунок 20

Домашнее задание: п.30 (1 часть), вопрос 1 гл. IV стр. 89 учебника; № 223 (а, в), № 225.

23.02.2015