Урок по теме "Решение квадратных уравнений". 8-й класс

Разделы: Математика

Класс: 8


Рассмотрим стандартные (изучаемые в школьном курсе математики) и нестандартные приёмы решения квадратных уравнений.

1. Разложение левой части квадратного уравнения на линейные множители.

Рассмотрим примеры:

3) х2 + 10х – 24 = 0.

6(х2 + х – х ) = 0 | : 6

х2 + х – х – = 0;

х(х – ) + (х – ) = 0;

х(х – ) (х + ) = 0;

= ; .

Ответ: ; – .

Для самостоятельной работы:

Решите квадратные уравнения, применяя метод разложения левой части квадратного уравнения на линейные множители.

а) х2 – х = 0;

г) х2 – 81 = 0;

ж) х2 + 6х + 9 = 0;

б) х2 + 2х = 0;

д) 4х2 – = 0;

з) х2 + 4х + 3 = 0;

в) 3х2 – 3х = 0;

е) х2 – 4х + 4 = 0;

и) х2 + 2х – 3 = 0.

Ответы:

а) 0; 1

г) ± 9

ж) – 3

б) -2; 0

д)

з) -3; -1

в) 0; 1

е) 2

и) -3; -1

2. Метод выделения полного квадрата.

Рассмотрим примеры:

Для самостоятельной работы.

Решите квадратные уравнения, применяя метод выделения полного квадрата.

3. Решение квадратных уравнений по формуле.

ах2 + вх + с = 0, (а | · 4а

2х2 + 4ав + 4ас = 0;

2ах + 2ах·2в + в2 – в2 + 4ас = 0;

2 = в2 – 4ас;

= ± ;

2ах = -в ±;

х1,2 =.

Рассмотрим примеры.

Для самостоятельной работы.

Решите квадратные уравнения, применяя формулу х1,2 =.

4. Решение квадратных уравнений с использованием теоремы Виета (прямой и обратной)

x2 + px +q = 0 – приведённое квадратное уравнение

по теореме Виета.

Если то уравнение имеет два одинаковых корня по знаку и это зависит от коэффициента .

Если p, то .

Если p, то.

Например:

Если то уравнение имеет два различных по знаку корня, причём больший по модулю корень будет , если p и будет , если p.

Например:

Для самостоятельной работы.

Не решая квадратного уравнения, по обратной теореме Виета определите знаки его корней:

Ответы:

а, б, к, л – различные корни;

в, д, з – отрицательные;

г, е, ж, и, м – положительные;

5. Решение квадратных уравнений методом “переброски”.

Для самостоятельной работы.

Решите квадратные уравнения, применяя метод “переброски”.

6. Решение квадратных уравнений с применением свойств его коэффициентов.

I. ax2 + bx + c = 0, где a 0

1) Если а + b + с = 0, то х1 = 1; х2 =

Доказательство:

ax2 + bx + c = 0 |: а

х2 + х + = 0.

По теореме Виета

По условию а + b + с = 0, тогда b = -а – с. Далее получим

Из этого следует, что х1 =1; х2 = . Что и требовалось доказать.

2) Если а – b + с = 0 (или b = а +с ) , то х1 = – 1; х2 = –

Доказательство:

По теореме Виета

По условию а – b + с = 0 , т.е. b = а +с . Далее получим:

Поэтому х1 = – 1; х2 = – .

Рассмотрим примеры.

1) 345 х2 – 137 х – 208 = 0.

а + b + с = 345 – 137 – 208 = 0

х1 = 1; х2 = =

Ответ: 1;

2) 132 х2 – 247 х + 115 = 0.

а + b + с = 132 -247 -115 = 0.

х1 = 1; х2 = =

Ответ: 1;

Для самостоятельной работы.

Применяя свойства коэффициентов квадратного уравнения, решите уравнения

II. ax2 + bx + c = 0, где a 0

х1,2 = . Пусть b = 2k, т.е. чётное. Тогда получим

х1,2 = = = =

Рассмотрим пример:

2 – 14х + 16 = 0 .

D1 = (-7)2 – 3·16 = 49 – 48 = 1

х1,2 = ;

х1 = = 2; х2 =

Ответ: 2;

Для самостоятельной работы.

а) 4х2 – 36х + 77 = 0

б) 15х2 – 22х – 37 = 0

в) 4х2 + 20х + 25 = 0

г) 9х2 – 12х + 4 = 0

Ответы:

а) 3,5; 5,5

б) -1; 2

в) -2,5

г)

III. x2 + px + q = 0

х1,2 = – ± 2– q

Рассмотрим пример:

х2 – 14х – 15 = 0

х1,2 = 7 = 7

х1 = -1; х2 = 15.

Ответ: -1; 15.

Для самостоятельной работы.

а) х2 – 8х – 9 = 0

б) х2 + 6х – 40 = 0

в) х2 + 18х + 81 = 0

г) х2 – 56х + 64 = 0

Ответы:

а) -1; 9

б) -10; 4

в) –9

г) 28 18

7. Решение квадратного уравнения с помощью графиков.

Примеры.

а) х2 – 3х – 4 = 0

х2 = 3х + 4

Ответ: -1; 4

б) х2 – 2х + 1 = 0

х2 = 3х + 4

Ответ: 1

в) х2 – 2х + 5 = 0

х2 = 2х -5

Ответ: нет решений

Для самостоятельной работы.

Решить квадратные уравнения графически:

8. Решение квадратных уравнений с помощью циркуля и линейки.

ax2 + bx + c = 0,

х2 + х + = 0.

х1 и х2 – корни.

Пусть А(0; 1), С(0;

По теореме о секущих:

ОВ· ОД = ОА · ОС.

Поэтому имеем:

х1 · х2 = 1 · ОС;

ОС = х1 х2

К(; 0), где = -

F(0; ) = (0; ) = )

S(-; )

Итак:

1) Построим точку S(-; ) – центр окружности и точку А(0;1).

2) Проведём окружность с радиусом R = SA/

3) Абсциссы точек пересечения этой окружности с осью ох являются корнями исходного квадратного уравнения.

Возможны 3 случая:

1) R > SK (или R > ).

Окружность пересекает ось ох в точке В(х1; 0) и D(х2; 0), где х1 и х2 – корни квадратного уравнения ax2 + bx + c = 0.

2) R = SK (или R = ).

Окружность касается оси ох в тоске В11; 0), где х1 – корень квадратного уравнения

ax2 + bx + c = 0.

3) R < SK (или R < ).

Окружность не имеет общих точек с осью ох, т.е. нет решений.

Примеры.

1) x2 – 2x – 3 = 0.

Центр S(-; ),т.е.

х0 = = – = 1,

у0 = = = – 1.

(1; – 1) – центр окружности.

Проведём окружность (S; AS), где А(0; 1).

 

Ответ: х1 = – 1; х2 = 3.

2) x2 – 5x + 4 = 0.

х0 = = – = 2,5; у0 = = = 2,5.

 

Ответ: х1 = 1; х2 = 4.

3) x2 + 4x + 4 = 0.

х0 = = – = – 2,

у0 = = = 2,5

Ответ: х = -2.

4) x2 – 2x + 3 = 0.

х0 = = – = 1,

у0 = = = 2.

Ответ: нет решений.

Для самостоятельной работы.

Решить следующие квадратные уравнения с помощью циркуля и линейки:

9. Решение квадратных уравнений с помощью номограммы

Для решения используют Четырёхзначные математические таблицы В.М. Брадиса (таблица XXII, стр. 83).

Номограмма позволяет, не решая квадратного уравнения x2 + px + q = 0, по его коэффициентам определить корни уравнения. Например:

5) z2 + 4z + 3 = 0.

Оба корня отрицательные. Поэтому сделаем замену: z1 = – t. Получим новое уравнение:

t2 – 4t + 3 = 0.

t1 = 1 ; t2 = 3

z1 = – 1 ; z2 = – 3.

Ответ: – 3; – 1

6) Если коэффициенты p и q выходят за пределы шкалы, то выполняют подстановку z = k · t и решают с помощью номограммы уравнение: z2+ pz + q = 0.

к2 t2 + p· kt + q = 0. |: к2

t2 + t + = 0.

к берут с расчётом, чтобы имели место неравенства:

Для самостоятельной работы.

С помощью таблицы Брадиса решить следующие квадратные уравнения:

10. Геометрический метод решения квадратных уравнений

Рассмотрим примеры, которые решаются с помощью геометрии.

Пример 1. (из “Алгебры” ал-Хорезми)

х2 + 10х = 39.

10 : 4 = 2 ; · 2 = 6 .

SABCD = х2 + 4Sпр. + 4Sкв. = х2 + 4·2х + 4 · 6 = х2 + 10х + 25.

Заменим х2 + 10х на 39.

SABCD = 39 + 25 = 64 = 82.

Значит сторона АВ = 8.

х= 8 – 2 – 2 =8 – 5 = 3.

х = 3

х1 + х2 = -10,

3 + х2 = -10,

х2 = -13.

Ответ: – 13

Пример 2. (решение уравнения древними греками)

у2 + 6у – 16 = 0.

у2 + 6у = 16, |+ 9

у2 + 6у + 9 = 16 + 9

(у + 3)2 = 25

у + 3 = ± 5,

у1 = 2, у2 = -8.

Ответ: -8; 2

Для самостоятельной работы.

Решите геометрически уравнение у2 – 6у – 16 = 0.

Ответ: – 2; 8.