Программа по математике. 7-й класс

Разделы: Математика

Класс: 7


Учебно-тематическое планирование

  • Количество часов: всего 175 ч.; в неделю 5 ч.
  • Плановых контрольных уроков: 12 ч.
  • Планирование составлено на основе федерального компонента государственного стандарта среднего общего образования на базовом уровне.

Пояснительная записка

Данная рабочая программа ориентирована на усвоение обязательного минимума математического образования, позволяет работать без перегрузок в классе с детьми разного уровня обучения и интереса к предмету. Она составлена на основе федерального компонента государственного стандарта основного общего образования (7 класс – 175 часов). Программа реализована в учебниках:

1. Алгебра, 7 кл.: Часть 1: Учебник для общеобразовательных учреждений/ А.Г. Мордкович – М.: Мнемозина, 2009.

2. Алгебра, 7 кл.: Часть 2: Задачник для общеобразовательных учреждений/ А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская – М.: Мнемозина, 2009.

Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 175 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:

5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 125 часов; 2 часа в неделю геометрии во II-IV четверти, итого 50 часов.

Уровень обучения – базовый.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика, алгебра, геометрия, элементы комбинаторики, элементы теории вероятностей, статистика и логика. В своей совокупности они отражают богатый опыт обучения математике в нашей стране.

В ходе освоения содержания курса учащиеся получают возможность:

– развить представление о месте и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

– овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

– изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

– развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

– получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

– развить логическое мышление речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрции, интерпретации, аргументации и доказательства;

– сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Цели обучения математике:

– овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

– интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

– формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

– воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе преподавания математики следует обратить внимание на овладение умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:

– планирования и осуществления алгоритмической деятеьности;

– решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения;

– исследовательской деятельности, развития идей, проведения экспериментов, обобщения;

– ясного, точного, грамотного изложения своих мыслей в устной и письменной речи;

– поиска, систематизации, анализа и классификации информации.

С учётом возрастных особенностей класса выстроена система уроков, спроектированы цели, задачи, ожидаемые (планируемые) результаты.

Основой целеполагания является обновление требований к уровню подготовки школьников в системе естественно-математического образовании, отражающее важнейшую особенность педагогической концепции государственного стандарта – переход от суммы «предметных результатов» к «межпредметным результатам». Такие результаты представляют собой обобщённые способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса математики.

На ступени основной школы задачи учебных занятий определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.

При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.

Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулировать проблему и цели своей работы, определять адекватные способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Учащиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, рецензии.

Реализация календарно-тематического плана обеспечивает освоение общеучебных умений и компетенций в рамках информационно-коммуникативной деятельности:

– создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи;

– формирование умения использовать различные языки математики;

– создание условия для плодотворного участия в работе в группе, самостоятельной и мотивированной организации своей деятельности;

На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, формулировать выводы.

Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации.

Учащиеся должны уметь развёрнуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания базы данных, презентации результатов познавательной и практической деятельности. Стандарт ориентирован на воспитание школьника – гражданина и патриота России, развитие духовно-нравственного мира ученика, его национального самосознания. Эти положения нашли отражение в содержании уроков.

В процессе обучения у школьников должно быть сформировано умение формулировать свои мировоззренческие взгляды, и на этой основе будет осуществляться воспитание гражданственности и патриотизма.

В ходе освоения содержания курса алгебры учащиеся получают возможность:

– развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

– овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

– изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

– развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

– получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

– развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

– сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе геометрии 7 класса систематизируются знания обучающихся о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вводится понятие теоремы; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится новый класс задач – на построение с помощью циркуля и линейки; вводится одно из важнейших понятий – понятие параллельных прямых; даётся первое представление об аксиомах и аксиоматическом методе в геометрии; вводится аксиома параллельных прямых; рассматриваются новые интересные и важные свойства треугольников (в данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников).

ОСНОВНОЕ СОДЕРЖАНИЕ (Алгебра)

Глава 1. Математический язык. Математическая модель (8 ч.) 

Числовые и алгебраические выражения. Математический язык. Математическая модель. Линейное уравнение с одной переменной. Координатная прямая.

Основная цель: Повторить известные из курса математики 5-6 классов понятия числового и алгебраического выражений, дать учащимся общие представления о том, чем им предстоит заниматься в курсе алгебры, познакомить с тремя этапами математического моделирования при описании реальной ситуации на математическом языке: составление математической модели, работа с составленной моделью, ответ на вопрос задачи. Закрепить ранее приобретённые умения выполнять действия с рациональными числами и простейшие преобразования выражений, решать несложные уравнения, использовать аппарат уравнений для решения текстовых задач.

Глава 2. Линейная функция (17 ч.)

Координатная плоскость. Линейное уравнение с двумя переменными и его график. Линейная функция и её график. Линейная функция у = кх. Взаимное расположение графиков линейных функций.

Основная цель: Напомнить учащимся понятия координатной прямой и координатной плоскости, алгоритмы отыскания координат точки и точки по координатам, ввести числовые промежутки (отрезки, интервалы, лучи) и дать их различные интерпретации (вербальную, аналитическую, геометрическую), ввести понятия линейного уравнения с двумя переменными и его графика, линейной функции и прямой пропорциональности; на примере линейной функции, которая вводится как частный случай линейного уравнения с двумя переменными, познакомить учащихся (на наглядно-интуитивном уровне) с первыми свойствами функций: наибольшее и наименьшее значение на промежутке, возрастание и убывание.

Глава 3. Системы двух линейных уравнений с двумя переменными (14 ч.)

Основные понятия. Метод подстановки. Метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций.

Основная цель: Дать учащимся представления о такой математической модели, как система двух линейных уравнений с двумя переменными, научить использовать для решения таких систем методы подстановки и алгебраического сложения, графического метода; научить решать текстовые задачи, математическое моделирование которых приводит к системе двух линейных уравнений с двумя переменными. Ввести понятие «линейное уравнение с двумя переменными». Формировать умение строить график уравнения ax + by = c, где , при различных значениях a‚b и с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место следует отвести изучению алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

Глава 4. Степень с натуральным показателем и ее свойства (11 ч.)

Степень с натуральным показателем. Таблица основных степеней. Свойства степени с натуральными показателями. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

Основная цель: Ввести понятие степени с целым неотрицательным показателем, познакомить учащихся со свойствами степеней, привести первые образцы строгих математических рассуждений. Дать определение степени с натуральным показателем. При вычислении значений выражений, содержащих степени, следует обратить внимание на порядок действий. Обоснование свойств степеней позволяет познакомить учащихся с доказательствами, проводимыми на алгебраическом материале.

Глава 5. Одночлены. Арифметические операции одночленами (9 ч.)

Одночлен. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Основная цель: Ввести понятия одночлена, стандартного вида одночлена, подобных одночленов, научить школьников выполнять арифметические операции над одночленами.

Глава 6. Многочлены. Арифметические операции над многочленами (18 ч.)

Многочлен. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращённого умножения. Деление многочлена на одночлен.

Основная цель: Ввести понятия многочлена и стандартного вида многочлена, научить школьников выполнять арифметические операции над многочленами и пользоваться формулами сокращенного умножения, дать первые представления об алгебраических дробях (в связи с проблемой деления многочлена на одночлен). Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Изучение начать с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами – сложение, вычитание и умножение. Добиваться от учащихся понимания, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразование целых выражений. Учащиеся должны усвоить формулы (a ± b)2=a2±2ab+b2, (a-b)(a+b)=a2-b2, знать их словесные формулировки и уметь применять эти формулы как для преобразования произведения в многочлен (слева направо), так и для разложения на множители (справа налево). Формулы (a ± b)(a2ab+b2)=a2±b2 не относятся к числу обязательных.

Глава 7. Разложение многочленов на множители (21 ч.)

Вынесение общего множителя за скобки. Способ группировки. Разложение многочленов на множители с помощью формул сокращённого умножения. Разложение многочленов на множители с помощью комбинации различных приёмов. Окращение алгебраических дробей. Тождества.

Основная цель: Объяснить учащимся, в чем состоит цель разложения многочлена на множители, познакомить их с основными приемами разложения многочлена на множители. Хотя тема «Алгебраические дроби» изучается в 8 классе, здесь учащиеся опережающим образом знакомятся с сокращением алгебраических дробей, чтобы процедура разложения многочлена на множители перестала быть целью, а превратилась в средство для решения других задач. Серьёзное внимание следует уделить разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Использование рассматриваемых преобразований можно встретить при решении различных задач, прежде всего при решении уравнений. Изучение многочленов завершить материалом обобщающего характера: введением понятия целого выражения, решением комбинированных упражнений на преобразование целого выражения в многочлен и на разложение на множители.

Глава 8. Функция у=х2 (10 ч.)

Функция у=х2 . Графическое решение уравнений. Запись у = f(х).

Основная цель: Дать учащимся представление о том, что в математике, кроме линейных функций, встречаются и другие функции, например, у=х2 и кусочные функции; познакомить учащихся еще с двумя свойствами функций (на наглядно-интуитивном уровне): непрерывность функции, область определения функции; показать, как можно использовать графики функций для решения уравнений.

Обобщающее повторение (7 ч.)

Основная цель – сконцентрировать внимание учащихся на узловых вопросах учебного материала, обобщить и систематизировать сведения по всему курсу данной программы. Рассмотреть решение заданий комбинированного типа, задач эвристического характера и задач повышенной сложности.

Геометрия

Глава 1. Начальные геометрические сведения (7 часов)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур. В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики 1–6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Глава 2. Треугольники (15 часов)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Основная цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки. Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака – следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Глава 3. Параллельные прямые (9 часов)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель: ввести одно из важнейших понятий – понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых. Признаки и свойства параллельных прямых, связанных с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии).

Глава 4. Соотношения между сторонами и углами треугольника (17 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Основная цель: рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников. Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение. При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач. (4 часа) Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 7 класс.

Приложение 1, Приложение 2