Занятие элективного курса "Методы решения уравнений. содержащих модуль"

Разделы: Математика


Цели и задачи:

  • познакомить с методами решения уравнений, содержащих под знаком модуля выражение с переменной;
  • формирование умения решать данные уравнения, научить выбирать наиболее рациональный метод решения уравнений;
  • развитие логического мышления, речи;
  • создание условий, способствующих воспитанию у учащихся внимательности и аккуратности в решении уравнения.

Методы обучения: объяснение, выполнение тренировочных упражнений.

Формы контроля: самопроверка самостоятельно решенных задач.

Оборудование: компьютер, мультимедийный проектор, экран, папка с файлами (практикум), презентация урока (слайды).

Ход занятия

Фронтальный опрос.

Сформулируйте определение модуля числа.

Сформулируйте геометрическое истолкование модуля.

Может ли быть отрицательным значение суммы 2+?

Может ли равняться нулю значение разности 2-?

Как сравниваются два отрицательных числа?

Устная работа. Раскрыть модуль:

1. ; 6. ;
2. ; 7. ;
3. ; 8. при ;
4. ; 9. при ;
5. ; 10. при .

Проверка домашнего задания (класс разбит на 6 групп, каждая группа готовила презентацию по заранее выбранному методу, которая и будет представлять, и защищать ее).

Изучение нового материала.

1. Метод интервалов

Для того, чтобы решить уравнение, содержащее неизвестную под знаком модуля, необходимо освободиться от знака модуля, используя его определение. Для этого следует:

1) Найти критические точки, т.е. значение неизвестной, при которых выражение, стоящее под знаком модуля, обращается в нуль;

2) Разбить область допустимых значений уравнения на промежутки, на каждом из которых, выражения, стоящие под знаком модуля сохраняют знак;

3) На каждом из этих промежутков уравнение записать без знака модуля, а затем решить его.

Объединение решений, найденных на всех промежутках, и составляет решение исходного уравнения.

Пример 1. Решите уравнение: |x+4|=2x -10.

(- ;- 4) [-4;+ )
- х - 4 = 2х -10

3х=6

х=2 (- ;-4)

х+4=2х-10

х=14 [-4;+ )

Ответ: 14.

Пример 2. Решите уравнение: х 2-5|x|+6=0

(- ;0) [0;+ )
х +5х+6=0

х1 =-2 (- ;0)

х2 =-3 (- ;0)

х -5х+6=0

х1 =2 [0;+ )

х2=3 [0;+ )

Ответ: 2; 3.

Пример 3. Решите уравнение: |5-2x|+|x+3|=2-3x

5-2x=0 x+3=0

х=2,5 х=-3

  (- ;-3) [-3;+2,5) [-2,5;+ )
5-2х + + -
х+3 - + +
(- ;-3) [-3;+2,5) [-2,5;+ )
5-2х-х-3-2+3х=0

0х=0

х-любое число

(- ;-3)

5-2x+x+3-2+3x=0

2х=-6

х=-3 [-3;2,5)

2х-5+х+3-2+3х=0

6х=4

x=2/3 [2,5;+ )

(- ;-3) {-3}=(- ;-3]

Ответ: (- ;-3].

2. Возведение обеих частей уравнения в квадрат.

Для того, чтобы решить уравнение содержащее модуль, необходимо освободиться от знака модуля. Для этого следует: возвести в квадрат обе части уравнения, решить его. Но не забывать, что при возведении в квадрат появляются лишние корни, поэтому, надо найти ОДЗ и выявить принадлежат ли корни данному условию.

Пример 4. Решите уравнение: |x+4|=2x-10.

Возведем в квадрат обе части уравнения

X2 +8x+16=4x2 -40x+100

3x2 -48x+84=0 /3

X2 -16x+28=0

X1=14, X2=2

Найдём ОДЗ:

2x-100;

2x10 ;

x5.

x1=14 [5;+ ), х2=2 [5;+ )

Ответ:14

Пример 5. Решите уравнение: |x+3|=2x-3

Возведем в квадрат обе части уравнения

х2 +6x+9=4x2 -12x+9; 3x2 -18x=0 /:3

х2 -6x=0; x(x-6)=0

x=0, x=6.

Найдём ОДЗ: 2х-30, 2x3, x1,5

x=0 [1,5;+)

x=6 [1,5;+ )

Ответ: 6.

3. Метод введения новой переменной

Иногда уравнение, содержащее переменную под знаком модуля, можно решить довольно просто, используя метод введения новой переменной.

Продемонстрируем данный метод на конкретных примерах:

Пример 6. Решите уравнение: х2 -5|x|+6=0.

Пусть |x |=t,тогда

|x|2 =x2 =t2 ,тогда уравнение примет вид:

t2 -5t+6=0

t1=2, |x |=2, x1,2= 2,

t2=3, |x |=3, x3,4= 3.

Ответ: 2, 3.

Пример 7. Решите уравнение: (x-2)2 - 8|x-2|+15=0.

Пусть |x-2|=t ,|x-2|2 =(x-2)2 =t2 ,

тогда уравнение примет вид: t2 -8t+15=0, D=16-15=1.

t1=3, t2=5.

t1=3, |x-2|=3, x1=5, x2=-1.

t2=5, |x-2|=5, x3=7, x4=3.

Ответ: -1; 3; 5; 7.

4. Метод замены уравнения совокупностью систем.

Рассмотрим ещё один метод решения подобных уравнений - метод замены уравнения совокупностью систем. Методом замены уравнения совокупностью систем можно решать уравнения вида

(2)

Причём данное уравнение можно заменять совокупностью систем двумя способами.

I способ:

II способ:

Если в уравнении функция имеет более простой вид, нежели функция , то имеет смысл исходное уравнение заменять первой совокупностью систем, а если более простой вид имеет функция , тогда исходное уравнение следует заменять второй совокупностью систем.

В частности, используя определение модуля, уравнение: ,

при С 0 равносильно совокупности уравнений и , т.е.

при С=0

при С0 уравнение решений не имеет.

Воспользуемся данным методом при решении следующих уравнений.

Пример 8. Решите уравнение: 2|х2+2х-5|=х-1.

Данное уравнение равносильно совокупности систем:

2+4х-10-1+х=0

2+5х-11=0

Д=113

2+4х-10-х+1=0

2+3х-9=0

Д=81=92.

Ответ: .

Пример 9. Решите уравнение: |2|x-1|-3|=5.

Используя определение модуля уравнение <=> совокупности двух уравнений:

Первое уравнение совокупности равносильно совокупности двух уравнений:

Второе уравнение совокупности решений не имеет, т.к.

Ответ: -3; 5.

5. Графический метод

Существует ещё один метод решения уравнений с модулем. Он основан на геометрической интерпретации понятия абсолютной величины числа, а именно модуль х равен расстоянию от точки с координатой х до точки с координатой 0 на числовой прямой Ох. Используя геометрическую интерпретацию, легко решаются уравнения вида:

(4)

(5)

(6) где а,в,с - числа.

Решить уравнение (4) - это значит найти все точки на числовой оси Ох, которые отстоят от точки с координатой а на расстояние с.

При уравнение решений не имеет;

при уравнение имеет один корень;

при уравнение имеет два корня

Решить уравнение (5) - это значит найти все точки на числовой оси Ох, для каждой из которых сумма расстояний от неё до точки с координатами а и в равна с.

Аналогично интерпретируется решение уравнения вида (6).

Пример 12. Решите уравнение: |x-1|-|x-3|=2

Для того, чтобы решить данное уравнение, нужно на числовой оси Ох найти все такие точки, для каждой из которых разность расстояния от нее до точки с координатой 1 и расстояния от неё до точки с координатой 3 равна 2. Так как длина отрезка [1;3] равна 2,то ясно, что любая точка с координатой х3 удовлетворяет данному уравнению, а любая точка с координатой х<3 не удовлетворяет ему. Таким образом, решением исходного уравнения является множество чисел промежутка [3;+ ).

Ответ: [3;+ ).

Рассмотренный метод можно отнести к графическим методам решения уравнения. Все необходимые построения здесь производились на числовой оси. Рассмотрим теперь метод решения уравнения, в котором будем использовать построения на координатной плоскости. Этим методом, теоретически, можно решать уравнения с модулем любого вида, однако практическая реализация метода иногда бывает довольно сложной.

Суть метода состоит в следующем. Решить уравнение f(х)=q(x) это значит найти все значения х, для которых значение функций y=f(x) и y=q(x) равны, т.е. найти абсциссы всех точек пересечения графиков этих функций. Если же графики не имеют общих точек, то уравнение не имеет корней. Следует, однако, иметь в виду, что точное построение графиков функций практически невозможно, поэтому решение, найденное графическим способом требует проверки подстановкой.

Воспользуемся этим методом для решения уравнения вида (3).

Пример 13. Решите уравнение: |- 1| = 3.

Решение. Построим графики двух функций y=|-1| и y=3

Из чертежа видно, что графики имеют 2 общие точки. Координаты одной точки: (8; 3) , другой: (-4; 3).

Следовательно, исходное уравнение имеет два решения: х1=8, x2= -4. Как уже говорилось, при каждом методе значения корней уравнения определяются приблизительно, и только проверка позволит доказать, что найденные значения действительно являются корнями исходного уравнения. При подстановке х1=8, x2= -4 в уравнение получаем, соответственно два верных числовых равенства: |-3|=3 и |3|=3.

Ответ: -4; 8.

Так как при графическом методе решения зачастую не удается найти точное значение корня, но применение данного метода бывает обосновано, если требуется найти не сами корни, а всего лишь определить их количество.

6. Решение уравнений, содержащих модуль под знаком модуля.

При решении уравнения, в котором под знаком модуля находится выражение, также содержащее модуль, можно сначала освобождаться от внутренних модулей, а затем в полученных уравнениях раскрывать оставшиеся модули.

Пример 10. Решите уравнение: |x-|4-х||- 2x = 4

Уравнение |x-|4-х||-2x=4 совокупности двух систем:

совокупности двух следующих систем

ЛОЖНО! (-; 2)

(4; +),

значит система решения не имеет.

Ответ: .

Иногда внимательный взгляд на уравнение позволяет упростить процесс нахождения его корней.

Пример 11. Решите уравнение: |2|х|-6| =- 4-х.

Левая часть уравнения неотрицательна для всех х, следовательно правая часть его должна быть такой же: .

Значит . т.е. |-2 х - 6 | =- 4 - х, , значит

, -2 х - 6 =- 4 - х,

-х = 2 , х = - 2 .

Ответ: корней нет.

Закрепление. Решить самостоятельно (двумя способами):

Самопроверка (на слайде презентации):

1 способ: Решим методом интервалов:

1. Найдем значения переменной, при которых выражение, стоящее под знаком модуля, обращается в нуль:

, , .

2. Разобьем область допустимых значений уравнения на промежутки, на каждом из которых, выражения, стоящие под знаком модуля сохраняют знак:

  (- ;0) [0;1) [1;2) [2;+ )
х2 - х + - + +
х - 2 - - - +

3. На каждом из этих промежутков уравнение записать без знака модуля, а затем решить его.

(- ;0), [1;2) [0;1) [2;+ )
х2 - х - х + 2 = х2 -2

-2х = -4

х = 2 (- ;0),

х = 2 [1;2).

- х2 + х - х + 2 = х2 -2

- 2х2 = - 4

х = 2 [1;2).

х2 - х + х - 2 = х2 -2

0х=0

х-любое число

[2;+ )

Объединение решений, найденных на всех промежутках, и составляет решение исходного уравнения.

Ответ: [2;+ ).

2 способ: Решим методом замены уравнения совокупностью систем:

.

Сумма двух неотрицательных выражений неотрицательна, значит левая часть уравнения неотрицательна для всех х, следовательно и правая часть его должна быть такой же, т.е. ; Данное уравнение равносильно совокупности систем:

совокупности двух следующих систем:

1)

2)

верно!

)

система решения не имеет.

 Домашнее задание.

1. Проработать теоретический материал.

2. Практикум "Уравнения с модулем". Решите уравнения с модулем рациональным способом:

Подведение итогов.

Список используемой литературы

  1. Сборник задач по алгебре. 8-9 класс. М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич, М.: Просвещение, 1992 г.
  2. Алгебра для 8-9 класса: пособие для учащихся школ и классов с углубленным изучением математики. Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев, под редакцией Н.Я. Виленкина - М.: Просвещение, 1998 г.
  3. Алгебраический тренажер: пособие для школьников и абитуриентов. А.Г. Мерзляк, В.Б. Полонский, М.С. Якир - М.: "Илексо" Харьков: "Гимназия" 1998 г.
  4. Задачи по математике. Алгебра. В.В. Вавилов, И.И. Мельников, С.Н. Олехин, П.И. Пасиченко - М.: Наука - главная редакция физико-математической литературы. 1987 г.
  5. Система тренировочных задач и упражнений по математике. А.Я. Симонов, Д.С. Бакаев, А.Г. Эпельман, А.А. Бесчинская, Р.М. Мостовой, А.Л. Абрамов - М.: Просвещение, 1991 г.

Приложение.