Цель:
- Формирование понятия первообразной.
- Подготовка к восприятию интеграла.
- Формирование вычислительных навыков.
- Воспитание чувства прекрасного (умение видеть красоту в необычном).
Математический анализ — совокупность разделов математики, посвященных исследованию функций и их обобщений методами дифференциального и интегрального исчислений.
Если до настоящего времени мы изучали раздел математического анализа, называемого диффренциальным исчислением, суть которого заключается в изучении функции в “малом”.
Т.е. исследование функции в достаточно малых окрестностях каждой точки определения. Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.
Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.
Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.
Пример №1.
Пусть (х)`=3х2.
Найдем f(х).
Решение:
Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х3, ибо (х3)`=3х2
Однако, легко можно заметить, что f(х) находится неоднозначно.
В качестве f(х) можно взять
f(х)= х3+1
f(х)= х3+2
f(х)= х3-3 и др.
Т.к.производная каждой из них равно 3х2. (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х3+С, где С - любое постоянное действительное число.
Любую из найденных функций f(х) называют ПЕРВООБРАЗНОЙ для функции F`(х)= 3х2
Определение. Функция F(х) называется первообразной для функции
f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х3 первообразная для f(х)=3х2 на (- ∞
; ∞ ).
Так как, для всех х ~R справедливо равенство: F`(х)=(х3)`=3х2
Как мы уже заметили, данная функция имеет бесконечное множество первообразных (смотри пример № 1).
Пример № 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на
промежутке ( 0; + ), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х-1/2=1/2х
Пример № 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на
промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos23х
Пример № 4.Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х2
на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х2
Лекция 2.
Тема: Первообразная. Основное свойство первообразной функции.
При изучении первообразной будем опираться на следующее утверждение. Признак постоянства функции: Если на промежутке J производная Ψ(х) функции равна 0, то на этом промежутке функция Ψ(х) постоянна.
Это утверждение можно продемонстрировать геометрически.
Известно, что Ψ`(х)=tgα, γде α-угол наклона касательной к графику функции Ψ(х) в точке с абсциссой х0. Если Ψ`(υ)=0 в любой точке промежутка J, то tgα=0 δля любой касательной к графику функции Ψ(х). Это означает, что касательная к графику функции в любой его точке параллельна оси абсцисс. Поэтому на указанном промежутке график функции Ψ(х) совпадает с отрезком прямой у=С.
Итак, функция f(х)=с постоянна на промежутке J, если f`(х)=0 на этом промежутке.
Действительно, для произвольного х1 и х2 из промежутка
J по теореме о среднем значении функции можно записать:
f(х2)- f(х1)=f`(с) (х2- х1), т.к.
f`(с)=0, то f(х2)= f(х1)
Теорема: (Основное свойство первообразной функции)
Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Доказательство:
Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая
первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0,
для х Є J.
Это означает, что Φ(х)- F(х) постоянна на
промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.
Пример: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.
Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sin х+С –множество всех первообразных.
F1 (х) = Sin х-1
F2 (х) = Sin х
F3 (х) = Sin х+1
Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).
Пример: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)
Решение: F(х)=х2+С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 12+С
С = 3
F(х) = х2+3