Решение уравнения sin x - cos x = 1. Урок-семинар

Разделы: Математика


Цели урока:

Главная дидактическая цель: рассмотреть все возможные способы решения данного уравнения.

Обучающие: изучение новых приемов решения тригонометрических уравнений на примере данного в творческой ситуации урока-семинара.

Развивающие: формирование общих приемов решения тригонометрических уравнений; совершенствование мыслительных операций учащихся; развитие умений и навыков устной монологической математической речи при изложении решения тригонометрического уравнения.

Воспитывающие: развивать самостоятельность и творчество; способствовать выработке у школьников желания и потребности обобщения изучаемых фактов.

Вопросы для подготовки и дальнейшего обсуждения на семинаре.

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Все учащиеся разбиваются на группы (по 2-4 человека) в зависимости от общего количества учащихся и их индивидуальных способностей и желания. Самостоятельно определяют для себя тему для подготовки и выступления на уроке-семинаре. Выступает один человек от группы, а остальные учащиеся принимают участие в дополнениях и исправлениях ошибок, если в этом возникнет необходимость.

Организационный момент.

Учащимся сообщаются:

Тема урока:

“Различные способы решения тригонометрического уравнения sin x - cos x = 1

Форма проведения: урок – семинар.

Эпиграф к уроку:

“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия. Задача, которую вы решаете, может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы”

(Д. Пойа)

Задачи урока:

а) рассмотреть возможность решения одного и того же уравнения различными способами;
б) познакомиться с различными общими приемами решения тригонометрических уравнений;
в) изучение нового материала (введение вспомогательного угла, универсальная подстановка).

План семинара

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Содержание.

1. Слово предоставляется первому участнику.

Приведение уравнения sin x - cos x = 1 к однородному относительно синуса и косинуса.
Разложим левую часть по формулам двойного аргумента, а правую часть заменим тригонометрической единицей, используя основное тригонометрическое тождество:

2 sin cos - cos + sin = sin + cos ;

2 sin cos - cos =0 ;
cos = 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует

cos =0 ; =

= 0 - однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin - 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1).

Получим tg -1 = 0 ; tg = 1 ; =
Ответ:
2. Слово предоставляется второму участнику.

Разложение левой части уравнения sin x - cos x = 1 на множители.

sin x – (1+ cos x ) = 1; используем формулы 1+ cos x = 2 , получим ;
далее аналогично:

произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует

cos =0 ; =
= 0 - однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin - 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1)

Получим tg -1 = 0 ; tg = 1 ; =
Ответ:

3. Слово предоставляется третьему участнику.

Решение уравнения sin x - cos x = 1 введением вспомогательного угла.

Рассмотрим уравнение sin x - cos x = 1. Умножим и разделим каждое слагаемое левой части
уравнения на . Получим и вынесем в левой части уравнения за скобку. Получим ; Разделим обе части уравнения на и используем табличные значения тригонометрических функций. Получим ; Применим формулу синус разности.
;

Легко установить(с помощью тригонометрического круга), что полученное решение распадается на два случая:

;

Ответ:

4. Слово предоставляется четвертому участнику.

Решение уравнения sin x - cos x = 1 способом преобразования разности (или суммы) тригонометрических функций в произведение.

Запишем уравнение в виде , используя формулу приведения . Применяя формулу разности двух синусов, получим

;

и так далее, аналогично предыдущему способу.

Ответ:

5. Слово предоставляется пятому участнику.

Решение уравнения sin x - cos x = 1 способом приведения к квадратному уравнению относительно одной из функций.

Рассмотрим основное тригонометрическое тождество , откуда следует
подставим полученное выражение в данное уравнение.
sin x - cos x = 1 ,

Возведем обе части полученного уравнения в квадрат:

В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Выполним ее.

Полученные решения эквивалентны объединению трех решений:

Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Остается проверить третье решение Подставим.
Левая часть:

Правая часть: 1.

Получили: , следовательно, – постороннее решение.

Ответ:

6. Слово предоставляется шестому участнику.

Возведение обеих частей уравнения sin x - cos x = 1 в квадрат.

Рассмотрим уравнение sin x - cos x = 1. Возведем обе части данного уравнения в квадрат.

;

;

Используя основное тригонометрическое тождество и формулу синуса двойного угла, получим ; sin 2x = 0 ; .

Полученное решение эквивалентно объединению четырех решений:

(эти решения можно нанести на единичную окружность). Проверка показывает, что первое и четвертое решения - посторонние.

Ответ:

7. Слово предоставляется седьмому участнику.

Использование универсальной подстановки в решении уравнения sin x - cos x = 1. Выражение всех функций через tg x по формулам:


Запишем данное уравнение с учетом приведенных формул в виде .
,

получим

ОДЗ данного уравнения – все множество R. При переходе к из рассмотрения выпали значения, при которых не имеет смысла, т. е. или .

Следует проверить, не являются ли решениями данного уравнения. Подставим в левую и правую часть уравнения эти решения.

Левая часть: .

Правая часть: 1.

Получили 1=1. Значит, - решение данного уравнения.

Ответ:

8. Слово предоставляется восьмому участнику.

Рассмотрим графическое решение уравнения sin x - cos x = 1.

Запишем рассматриваемое уравнение в виде sin x = 1 + cos x.

Построим в системе координат Оxy графики функций, соответствующих левой и правой частям уравнения. Абсциссы точек пересечения графиков являются решениями данного уравнения.

y = sin x – график: синусоида.
y = cos x +1 – график: косинусоида y = cos x, смещенная на 1 вверх по оси Oy. Абсциссы точек пересечения являются решениями данного уравнения.

Ответ:

Итог урока.

  • Учащиеся научились решать тригонометрические уравнения вида , освоили новый материал.
  • На примере одного уравнения рассмотрели несколько способов решения.
  • Учащиеся были непосредственными участниками урока, была задействована обратная связь в системе ученик-учитель.
  • Учащиеся получили навыки самостоятельной работы с дополнительной литратурой.

Список использованной литературы:

  1. Татарченкова С.С. Урок как педагогический феномен – Санкт-Петербург: Каро, 2005
  2. Выгодский Н.В. Справочник по элементарной математике.-М.: Наука, 1975.
  3. Виленкин Н.Я. и др. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Книга для учащихся 10-11 класса – М.: Просвещение, 1996.
  4. Гнеденко Б.В. Очерки по истории математики в России – М.: ОГИЗ, 1946.
  5. Депман И.Я. и др. За страницами учебника математики – М.: Просвещение, 1999.
  6. Дорофеев Г.В. и др. Математика: для поступающих в вузы – М.: Дрофа, 2000.
  7. Математика: Большой энциклопедический словарь. – М.: БСЭ, 1998.
  8. Мордкович А.Г. и др. Справочник школьника по математике. 10-11кл. Алгебра и начала анализа. – М.: Аквариум, 1997.
  9. 300 конкурсных задач по математике. – М.: Рольф, 2000.
  10. 3600 задач по алгебре и началам анализа. – М.: Дрофа, 1999.
  11. Школьная программа в таблицах и формулах. Большой универсальный справочник. – М.: Дрофа, 1999.
  12. Торосян В.Г. История образования и педагогической мысли: учеб. для студентов вузов. - М.: Изд-во ВЛАДОС-ПРЕСС, 2006.- 351 с.
  13. Крылова Н.Б. Педагогическая, психологическая и нравственная поддержка как пространство личностных изменений ребёнка и взрослого.// Классный руководитель.- 2000.- №3. –С.92-103.

26.03.2008